NATIONAL CANCER SPECIMEN HANDLING GUIDELINES 2020
National Cancer Specimen Handling Guidelines

Developed by the National Cancer Control Program, Department of Non-Communicable Diseases
Ministry of Health

Copyright 2020 Ministry of Health

Any part of this document may be freely reviewed, reproduced, quoted or translated in full or in part as long as the source is acknowledged. This document is not for sale or for use for commercial purposes.

Enquiries regarding this document should be addressed to:

The National Cancer Control Program
Department of Non-Communicable Diseases
Ministry of Health
P.O. Box 30016-00100, Nairobi, Kenya
Telephone: +254 202717077/+254 202722599
Email: ps@health.go.ke
Website: www.health.go.ke

Last edited: January 2021
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBREVIATIONS AND ACRONYMS....</td>
<td>8</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>9</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>10</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>11</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>13 -14</td>
</tr>
<tr>
<td>GENERAL CONSIDERATIONS FOR CANCER SPECIMENS</td>
<td>15</td>
</tr>
<tr>
<td>Standard Operating Procedures (SOPs), Manuals, and Forms</td>
<td>15</td>
</tr>
<tr>
<td>HUMAN RESOURCE</td>
<td>19</td>
</tr>
<tr>
<td>Skills & Cadres</td>
<td>20</td>
</tr>
<tr>
<td>Laboratory safety</td>
<td>20</td>
</tr>
<tr>
<td>Quality assurance (QA)</td>
<td>20</td>
</tr>
<tr>
<td>Ethical issues</td>
<td>20</td>
</tr>
<tr>
<td>Documents referred to in Monitoring & Evaluation and Ethical Considerations</td>
<td>20</td>
</tr>
<tr>
<td>BREAST</td>
<td>21</td>
</tr>
<tr>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>Further Considerations</td>
<td>24</td>
</tr>
<tr>
<td>Handling of Axillary lymph node dissection</td>
<td>25</td>
</tr>
<tr>
<td>Handling of Sentinel lymph node</td>
<td>25</td>
</tr>
<tr>
<td>GYNAECOLOGIC CANCERS</td>
<td>26</td>
</tr>
<tr>
<td>CERVIX</td>
<td>27</td>
</tr>
<tr>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>Cervical (PAP) smears</td>
<td>27</td>
</tr>
<tr>
<td>Punch biopsy</td>
<td>27</td>
</tr>
<tr>
<td>Cone biopsy</td>
<td>27</td>
</tr>
<tr>
<td>Radical Hysterectomy</td>
<td>28</td>
</tr>
<tr>
<td>Surgical Pathology report – minimum dataset</td>
<td>28</td>
</tr>
<tr>
<td>ENDOMETRIUM</td>
<td>31</td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Specimen types</td>
<td>31</td>
</tr>
<tr>
<td>Specimen handling</td>
<td>31</td>
</tr>
<tr>
<td>Grossing hysterectomy specimens</td>
<td>31</td>
</tr>
<tr>
<td>Minimum reporting items in the surgical report</td>
<td>31</td>
</tr>
<tr>
<td>OVARY</td>
<td>32</td>
</tr>
<tr>
<td>Handling</td>
<td>32</td>
</tr>
<tr>
<td>Gross Description</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Summary of Data set for reporting Ovarian Carcinoma</td>
<td>33</td>
</tr>
<tr>
<td>Macroscopic examination</td>
<td>33</td>
</tr>
<tr>
<td>PROSTATE CANCER</td>
<td>34</td>
</tr>
<tr>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>Specimen type/procedures</td>
<td>35</td>
</tr>
<tr>
<td>Specimen handling and sampling</td>
<td>35</td>
</tr>
<tr>
<td>Report</td>
<td>35</td>
</tr>
<tr>
<td>OESOPHAGEAL CANCER</td>
<td>37</td>
</tr>
<tr>
<td>Introduction</td>
<td>38</td>
</tr>
<tr>
<td>Diagnostic Workup</td>
<td>38</td>
</tr>
<tr>
<td>Grossing Procedure</td>
<td>38</td>
</tr>
<tr>
<td>Endoscopic biopsies</td>
<td>38</td>
</tr>
<tr>
<td>Specimen handling</td>
<td>38</td>
</tr>
<tr>
<td>Modified Ryan Scheme for Tumour Regression Score11</td>
<td>39</td>
</tr>
<tr>
<td>Prognostic/Stage Groupings</td>
<td>39</td>
</tr>
<tr>
<td>Stage Groupings</td>
<td>39</td>
</tr>
<tr>
<td>Ancillary testing: MSI and HER2 overexpression</td>
<td>39</td>
</tr>
<tr>
<td>COLORECTAL CANCER</td>
<td>40</td>
</tr>
<tr>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Specimen types</td>
<td>41</td>
</tr>
<tr>
<td>Specimen handling</td>
<td>41</td>
</tr>
<tr>
<td>Grossing colorectal resection specimens</td>
<td>41</td>
</tr>
<tr>
<td>Minimum reporting items in the surgical report</td>
<td>42</td>
</tr>
<tr>
<td>Excisional Biopsy (Polypectomy)</td>
<td>42</td>
</tr>
<tr>
<td>Resection</td>
<td>42</td>
</tr>
<tr>
<td>Protocol for the Examination of Specimens from Patients with Primary Carcinoma of the Colon and Rectum (resection)</td>
<td>42</td>
</tr>
<tr>
<td>Ancillary Studies</td>
<td>43</td>
</tr>
<tr>
<td>CHILDHOOD CANCERS</td>
<td>45</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
</tr>
<tr>
<td>Introduction</td>
<td>46</td>
</tr>
<tr>
<td>Specimens and tests in childhood neoplasia suspicion and diagnosis</td>
<td>46</td>
</tr>
<tr>
<td>Specimen Handling, processing and reporting</td>
<td>47</td>
</tr>
<tr>
<td>Lymph node</td>
<td>47</td>
</tr>
<tr>
<td>Bone Marrow Aspirate and Biopsy</td>
<td>47</td>
</tr>
<tr>
<td>Tissue biopsy</td>
<td>47</td>
</tr>
<tr>
<td>Trucut Kidney biopsy and Nephrectomy specimens</td>
<td>47</td>
</tr>
<tr>
<td>Ancillary testing in childhood cancer</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE REQUIREMENTS FOR FLOW CYTOMETRY AND CYTOGENETICS</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowcytometry</td>
<td>48</td>
</tr>
<tr>
<td>Cytogenetics</td>
<td>48</td>
</tr>
<tr>
<td>Cyto/histopathology report form</td>
<td>49</td>
</tr>
<tr>
<td>Specimen collection consent form</td>
<td>50</td>
</tr>
<tr>
<td>MINISTRY OF HEALTH Cyto/Histopathology specimen REFERRAL form</td>
<td>51</td>
</tr>
</tbody>
</table>

| LIST OF CONTRIBUTORS | 52 |
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMA</td>
<td>Bone Marrow Aspirate</td>
</tr>
<tr>
<td>BMT</td>
<td>Bone Marrow Trephine</td>
</tr>
<tr>
<td>BRCA</td>
<td>Breast Cancer gene</td>
</tr>
<tr>
<td>CIN</td>
<td>Cervical intraepithelial neoplasia</td>
</tr>
<tr>
<td>CIS</td>
<td>Carcinoma in Situ</td>
</tr>
<tr>
<td>CQI</td>
<td>Continuous quality Improvement</td>
</tr>
<tr>
<td>DHIS</td>
<td>District Health Information System</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EQA</td>
<td>External Quality Assurance</td>
</tr>
<tr>
<td>ER</td>
<td>Oestrogen receptor</td>
</tr>
<tr>
<td>EUA</td>
<td>Examination under Anaesthesia</td>
</tr>
<tr>
<td>FFPE</td>
<td>Formalin Fixed Paraffin Embedded</td>
</tr>
<tr>
<td>FNA</td>
<td>Fine Needle Aspirate</td>
</tr>
<tr>
<td>HER2</td>
<td>Human epidermal receptor2</td>
</tr>
<tr>
<td>HGD</td>
<td>High Grade Dysplasia</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditary non polyposis colon cancer</td>
</tr>
<tr>
<td>HPV</td>
<td>Human Papilloma virus</td>
</tr>
<tr>
<td>HSIL</td>
<td>High grade Squamous Intraepithelial Lesion</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research in Cancer</td>
</tr>
<tr>
<td>IATA</td>
<td>International Air Transport Association</td>
</tr>
<tr>
<td>IQA</td>
<td>Internal Quality Assurance</td>
</tr>
<tr>
<td>IQC</td>
<td>Internal Quality Control</td>
</tr>
<tr>
<td>KMLTTB</td>
<td>Kenya Medical Laboratory Technologist and Technician Board</td>
</tr>
<tr>
<td>KNH</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>LMIS</td>
<td>Laboratory Management Information System</td>
</tr>
<tr>
<td>LMIC</td>
<td>Low middle income countries</td>
</tr>
<tr>
<td>MDT</td>
<td>Multidisciplinary Tumor Board</td>
</tr>
<tr>
<td>ME</td>
<td>Margin Evaluation</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MRM</td>
<td>Modified radical Mastectomy</td>
</tr>
<tr>
<td>MTRH</td>
<td>Moi Teaching and Referral Hospital</td>
</tr>
<tr>
<td>NCCP</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>NPHLS</td>
<td>National Public Health Laboratory Services</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>PSA</td>
<td>Prostate specific Antigen</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>SOPs</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>TAT</td>
<td>Turnaround time</td>
</tr>
<tr>
<td>TURP</td>
<td>Trans urethral resection prostate</td>
</tr>
<tr>
<td>UHC</td>
<td>Universal Health Coverage</td>
</tr>
<tr>
<td>VIA</td>
<td>Visual Inspection with acetic Acid</td>
</tr>
<tr>
<td>VILI</td>
<td>Visual Inspection with Lugó's iodine</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Foreword

The right to health is a fundamental human right guaranteed in Article 43 1 (a) of the constitution of Kenya. The Kenya Cancer Policy 2019-2030 aims to promote access to optimal cancer diagnostics and treatment.

Diagnosis is the entry point to cancer care. The National Cancer Specimen Handling Guidelines 2020 have been developed in line with the implementation of Pillar 2 (Diagnosis, Registration and Surveillance) of the National Cancer Control Strategy 2017-2022. Approximately 70-80% of all cancer patients in Kenya are diagnosed at advanced stages of the disease when it is not amenable to optimal treatment leading to poor treatment outcomes and high mortality rates. Some of the contributing factors to late diagnosis include delayed, incomplete or inaccurate diagnosis as well as sub-optimal handling of cancer specimens leading to long turnaround times before a definitive diagnosis is made. Poorly handled cancer specimens also contribute to potential loss of critical pathological data leading to unsuitability for advanced tests such as immunohistochemistry which provide additional information to guide treatment decisions.

The purpose of these guidelines is to standardize and optimize cancer diagnosis for priority cancers through proper handling, processing of specimens and referrals. They emphasize gold standard pathology reporting protocols and prescribe the minimum clinical and pathological datasets for common cancers in Kenya in accordance with current evidence and international best practices.

It is my hope that these guidelines will be used to achieve the desired goal of timely, comprehensive and accurate cancer diagnosis. I urge all stakeholders to support the implementation of these guidelines to enable early diagnosis, improved treatment outcomes and better survival for cancer patients in Kenya.

Sen. Mutahi Kagwe, EGH
Cabinet Secretary
Ministry of Health
Acknowledgements

These guidelines were developed through a multi-stakeholder consultative process involving both the national and county governments’ experts within public and private sector institutions. The Ministry of Health wishes to thank all those who participated in the successful development of these guidelines.

We particularly appreciate the support from the offices of the Cabinet Secretary, Principal Secretary, Director General, Director, Directorate of Medical Services, Preventive and Promotive Health, Head, Department of Non-Communicable Diseases for the strategic guidance and support for the development of this document.

We wish to recognize members of the Pillar 2 Technical Working Group of the National Cancer Control Program who worked tirelessly in development of this document. A special thanks to Dr. Shahin Sayed and Dr. Richard Njoroge, the Pathologist supporting the National Cancer Control Program, who put together the technical team that contributed to the development of this document and Dr. Mary Nyangasi, the Head of the National Cancer Control Program for her coordination and guidance role. The contribution of the following individuals is also much appreciated: Dr. Waqo Ejersa, Dr. Njau Mungai, Dr. Catherine Muriithi, Hannah Gitungo, Lydia Kirika, Dr. Eunice Gathitu, Martin Mbaya and Lydia Kirika.

A special appreciation to the Kenyatta National Hospital, Moi Teaching and Referral Hospital, Kijabe Hospital, University of Nairobi, Maseno University, The Aga Khan University Hospital and the reviewers led by Dr. Zahir Moloo from the Aga Khan University Hospital, Nairobi for their professionalism, dedication and commitment in putting this technical document together. We are grateful to Roche and the Clinton Health Access Initiative (CHAI) for their financial support and the Bioventures for Global Health (BVGH) under the African Access Initiative who reviewed the initial draft and provided technical input.

The launch of these guidelines is timely with the implementation of Universal Health Coverage agenda and marks the beginning of a deliberate process to ensure that cancer diagnostics is prioritized in cancer control. I encourage all stakeholders to make use of these guidelines.

Susan N. Mochache, CBS
Principal Secretary
Ministry of Health
Executive Summary

The cancer burden is rising globally, exerting significant strain on populations and health systems at all income levels. In Kenya, cancer is the third leading cause of death after infectious and cardiovascular diseases. The International Agency for Research on Cancer (IARC) as per the GLOBOCAN report of 2018, estimated 47,887 new cases and 32,987 deaths annually. This represents close to 45% increase in incidence compared to the previous report that annual estimated 37,000 new cases with 28,500 deaths in 2012.

The following are the key recommendations of these guidelines.

1. Standardization in the handling of cancer specimens will improve cancer diagnosis, improve accuracy and reduce turnaround time

2. All specimens in suspected cancer cases shall be handled, processed and reported in a standardised manner as provided for in these guidelines

3. Adequate patient consent and institutionalization of specimen referral systems is a prerequisite for all specimen collection described in these guidelines.

4. The fixative 10% buffered formalin should be made available at all facilities collecting cancer specimens. For standardization, it is recommended that this fixative be processed centrally and be distributed to the peripheral facilities.

The goal of these guidelines is to institutionalize a well-coordinated guiding framework for handling cancer specimens for priority cancers to ensure timely diagnosis and linkage to care within the health sector in Kenya.

Dr. Patrick Amoth
Ag. Director General
Ministry of Health
Background

Global Cancer Burden

Cancer incidence and mortality rates continue to rise globally, with an estimated 18.1 million new cases and 9.6 million deaths in 2018. The number of new cases is expected to rise by about 70% over the next two decades, with significant and rising economic effects. The direct and indirect economic costs related to the prevention and treatment of cancer globally were approximately $1.16 trillion in 2010 (WHO, 2017).

Lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths) among both sexes combined. This is closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Globally, among males, lung cancer is leading in incidence and mortality, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the leading type of cancer in incidence and mortality, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality (GLOBOCAN 2018).

Cancer patterns in different world regions are complex, with the majority of cancers occurring in low- and middle-income countries (LMICs; GLOBOCAN 2018; WHO, 2017). The incidence and mortality for various types of cancer substantially vary across countries and within each country. This depends on the degree of economic development, advancement of healthcare, and associated environmental, sociocultural and lifestyle factors, among others.

Global Incidence & Mortality rates (Age-standardized) for top 10

Kenyan Situation

In Kenya, cancer is the 3rd leading cause of death after infectious and cardiovascular diseases. The annual incidence of cancer was estimated at 47,887 new cancer cases, with an annual mortality 32,987 in 2018. Among men, prostate, oesophageal and colorectal are the leading cancers, while among women, breast, cervical and oesophageal cancers are most common. The leading cause of cancer death in Kenya is oesophageal cancer, causing 13.2 % (4,351 deaths) of cancer mortality. Cervical cancer is the second leading cause of cancer death contributing 10% (3,266 deaths), while breast cancer comes in third at 7.7% (2,553 deaths) (GLOBOCAN, 2018).

Estimated number of new cancers in Kenya among all ages, both males & females, GLOBOCAN 2018

One characteristic associated with increased morbidity and mortality related to cancer is late-stage presentation, when cure is difficult to achieve. This is a common problem in Kenya, as is the case in many LMICs (WHO, 2018b), where diagnostic and treatment services are inadequate or non-existent (WHO, 2017). Data from Kenyatta National Hospital show that between 2014 and 2016, approximately 64% of cancer patients were diagnosed at stage III or IV. Many factors contribute to late diagnosis. For childhood cancers, low awareness and stigma amongst parents/guardians and caregivers lead to late presentation of patients to cancer treatment centres (Njuguna, 2016). Additionally, limited diagnostic facilities with insufficient equipment, laboratory consumables and personnel are a challenge.

In an effort to remedy the above-mentioned challenges with cancer diagnosis in Kenya, Pillar 2 of the Kenya National Cancer Control Strategy (NCCS) 2017-2022 focuses on Diagnosis, Registration and Surveillance. Cancer registries are important tools for establishing and maintaining a cancer incidence reporting system, providing information for the investigation of cancer and its causes, and assisting in the planning and evaluation of cancer prevention and control programs. Strategic Objective 2.2 indicates that the Ministry improves and strengthens cancer pathology diagnostic services by developing guidelines for pathology diagnostic workup of priority cancers in both children and adults, among other activities.

Diagnosis of Cancer

There are many techniques and modalities employed in cancer diagnosis, including various imaging modalities. However, tissue diagnosis remains the definitive diagnostic modality, and ordinarily, treatment will not be commenced without a confirmed tissue diagnosis. Tissue diagnosis is a specialist diagnostic service that requires highly trained specialists in pathology, biochemistry, molecular genetics, immunohistochemistry and other fields, as well as skilled laboratory personnel.

Tissue diagnosis requires advanced equipment and laboratory supplies. The specimen is usually tissue, blood or aspiration material. The initial handling for these specimens, irrespective of the tests required, is usually the same. Therefore, standardization of specimen handling is possible.

Specimen handling procedures are straightforward, but because of lack of guidelines and standardization, errors of procedure...
occur, resulting in either unsuitability for one or more subsequent tests or inaccurate results. Even though the diagnostic procedure itself may be sophisticated, specimen handling is often simple and inexpensive, and with standardization errors can be minimized or even be eliminated.

Standardization in handling cancer specimens for diagnosis should begin from the time the specimen is obtained and extend to the time the final pathology report is issued. Specimen handling involves a multidisciplinary team of health care workers.

Diagnostic capacity for cancer in the Kenyan Health System

Several reports and surveys have shown the current status of diagnostic capacity in the Kenyan health sector, both public and private. These reports describe the current situation pertaining to medical laboratory diagnosis, in general, and cancer, in particular. With regard to cancer, the reports highlight the current challenges facing the country in actualizing timely and accurate diagnosis. The challenges, among others, revolve around lack of appropriately trained human resources, such as pathologists and technologists, lack of equipment, equipment downtime, lack of standardization, failure to use approved laboratory procedures, unreliable supplies, suboptimal pathology referral and consultation system, and a disconnect in coordinating and running diagnostic services. This has led to a situation where a majority of definitive cancer diagnoses are dispensed from private facilities, and the two national referral facilities (KNH and MTRH) are overwhelmed due to the above-highlighted constraints facing lower-level facilities.

The end result is a haphazard, uncoordinated, inadequately standardized, inaccessible, and expensive cancer diagnostic service that contributes to delayed diagnosis and access to care.

Why are these guidelines needed?

Early diagnosis is associated with better clinical outcomes and prognosis. Accessible, affordable, and effective laboratory services are crucial for early cancer diagnosis. However, guidelines for cancer pathology diagnostic tests are generally unavailable and quality control measures are lacking.

The National Specimen Handling Guidelines will serve as a guiding document for all stakeholders to ensure standardization of specimen handling, processing and reporting using, and evidence-based pathology diagnostic services in Kenya. The guidelines will also enhance coordination of pathology diagnostic activities across the country and allow for more efficient resource allocation.

Who should use the guidelines?

All stakeholders at all levels of care who see patients at risk for cancer should be aware of the National Specimen Handling Guidelines in Cancer Management. Those specifically involved in the pathology diagnostic workup of cancer specimens, including referral of specimens to county or national laboratories, should have particular familiarity with the guidelines. Through an integrated approach, the guidelines facilitate collaboration amongst stakeholders and a common understanding of where they fit in the overall spectrum of cancer pathology diagnosis.
General considerations for cancer specimens

Patient preparation, informed consent and investigation Requisitions
The patient or guardian shall be informed regarding the test indication, specimen collection procedure and process toward laboratory results or report. This discussion shall include costs, expected time lines, and supplementary tests and procedures, when relevant. The patient or guardian shall sign consent upon this discussion. The clinician requesting the test shall liaise with the referral system and laboratory till conclusion of report, including supplementary reports. The primary facility collecting the specimen shall take charge of the initial specimen handling and commitment into the referral system at initial (primary laboratory); it shall receive all reports (first and supplementary) to guide patient management and treatment.

Standard Operating Procedures (SOPs), Manuals, and Forms

Every laboratory must adopt and adhere to national SOPs, manuals, and forms. These shall include the following:

A. Specimen Handling SOP
1. Identification
2. Preparation/consent
3. Requisition
4. Sampling
5. Labelling
6. Laboratory reception
7. Processing
8. Packaging
9. Specimen/Sample referral
10. Transportation
11. Storage
12. Archiving
13. Disposal/ Museum display

B. Reporting and releasing of results SOP
1. Result format
2. Critical values
3. Results communication
4. Confidentiality
5. Storage, archiving and disposal

C. Equipment Management SOP
1. Selection
2. Procurement
3. Installation and commissioning
4. Training
5. Verification and validation
6. Maintenance
7. Retirement and disposal

D. Non-conformance, Corrective and Preventative Action
1. Identification of Non-Conformances
2. Root cause analysis
3. Corrective actions
4. Preventive actions
5. Measurement of effectiveness of CAPA

E. Personnel management SOP
1. Recruitment/ selection
2. Deployment and staff orientation
3. Training and records
4. Competency assessment

F. Ethical conduct SOP
1. Professionalism
2. Conflict of interest
3. Enforcement

G. Commodity and supplies management
1. Selection
2. Procurement/ordering and reception
3. Inventory management
4. Storage and disposal

H. Quality assurance SOP
1. Internal Quality Control
2. External Quality Assurance
3. Interlab Variation
4. Accreditation
5. Customer satisfaction survey

I. Environmental conditions Monitoring SOP
1. Temperatures
2. Humidity

J. Safety SOP

A. Specimen collection and handling at collection site
At the point of collection, the required commodities such as wide-mouthed container, 10% neutral buffered formalin, labelling material, appropriate sutures or dyes for identification purposes, glass slides as appropriate, must be available. The specimen should be fixed immediately (cold ischaemic time) after removal to prevent autolysis and putrefaction and taken to the laboratory immediately. At every specimen sampling point, e.g. theatre, there shall be a standard to guide specimen handling and delivery to the laboratory. This shall include placing orientation features, use of specified containers, fixatives and primary dissection if required, and labelling. Avoidance of crush artifacts shall be observed by gentle handling and use of wide mouth containers.

Tissue shall be placed in specified preservative at earliest encounter to avoid ischemic damage, routinely 10% neutral buffered formalin in a ratio of 1:10 volume (specimen: preservative)
Information on the specimen label must match that on the requisition form. Standardized labels should be used. Minimum data required on the specimen label include the following:

- Last name, First name
- Date of Birth – DD-MM-YYYY
- Outpatient/ Inpatient number
- Ordering physician
- Site of specimen
- Time of fixation

Minimum data required on request form:

- Bio data - patient three names, national identification number, inpatient or outpatient no., date of birth, sex, marital status, patient telephone number and next of kin name and phone number, county of residence, occupation, education level, smoking status, drinking status
- Clinical information – presenting complaints, duration, clinical findings and diagnosis, anatomic site sampled, nature/type of specimen, date and time of sample collection, name and institution of clinician.

Specimen type

This shall depend on the level of care as per the Kenya Essential Package for Health, equipment, personnel and training available to provide the services. At introduction, the referral system shall have a monitoring supervisory and mentoring system. Specimens shall include Exfoliated cell cytology samples such as urine, peritoneal and pleural space aspirates, sputum and bronchial washes, etc. as necessary for body region or system cancer diagnosis, staging and management. These shall be collected in specified containers and/or smear slides.

Other specimens shall depend on organ, system and suspected pathology as specified in relevant sections of guideline; examples fine needle aspirates (FNA), cervical smears and wound impression smears, cavity and cyst curettage, endometrial curettage, biopsy, wound edge biopsy, lumps and small masses excisions, incision biopsies, bone marrow aspirates and biopsy, other organ and system biopsy types per surgical procedure.

All tissue material removed from body should be subjected to histology evaluation. These include tubal and bowel resections, abscess curettage, appendectomies, bone resection and fragments, etc. Exception of the tissues that are not sent to the laboratory, e.g. teeth, lens removed for cataracts, etc., must be authorized by the respective hospital medical advisory committee or equivalent authority.

Where partial specimen processing is possible, activities to be performed shall be pre-determined such that consultation structure are tailored to maximize local capacity referring only what is necessary. An example is when there is capacity for sample collection (biopsy), tissue processing and slides preparation and staining, but no microscopy reporting, only stained slides for reading/reporting is be outsourced or referred into the referral system.

<table>
<thead>
<tr>
<th>Level of Health Care</th>
<th>Suspected Cancer detection Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Health Care Level – previously level 1</td>
<td>-</td>
</tr>
<tr>
<td>Primary Health Care Level (Dispensary and Health centres) – previously levels 2 and 3</td>
<td>-</td>
</tr>
<tr>
<td>Secondary Health Care Level (County Referral Hospitals) – previously levels 4 and 5</td>
<td>FNA/ Exfoliative Cytology, Biopsies, Resection specimens, Bone Marrow Aspirates</td>
</tr>
<tr>
<td>Tertiary Health Care Level (National Referral Hospitals) – previously level 6</td>
<td>All the above plus Molecular tests, Immunohistochemistry, Genetics, Liquid Biopsies</td>
</tr>
</tbody>
</table>

Frozen sections

Should be done only at specialized centres and cross consultation required in its total planning and implementation.

Specimen receiving

Specimen received into laboratory system shall have a minimum of two unique identifiers and label to be used throughout processing and reporting and committed to a tracking system. The hospital bears the responsibility of the specimen handling and NOT the patient. All the personnel handling the specimen at all levels including transportation shall be documented and movement logs provided. Transport of specimens to the laboratory needs to occur as soon as possible and in cognizance of initial handling and referral system logistics to prevent delays in specimen processing. At reception, the specimen shall be evaluated against acceptance rejection criteria and preserved with appropriate fixative unless its prior done.
Specimen rejection

It is important to establish criteria for rejection and equally important to define what happens if those criteria are met. In other words, laboratories must uphold strict standards for the conditions under which specimens will be accepted, but there must also be a mechanism in place to allow any deficiencies to be corrected before a specimen would potentially be discarded. Essentially, all efforts should be made to analyze all specimens obtained from suspected cancer patients and limitations addressed. The requesting clinician/institution shall be contacted immediately regarding possible rejections.

Specimen grossing

Every laboratory conducting grossing must have an appropriately-sized grossing station, including a sink and a biosafety hood with adequate ventilation. Specific recommendations for grossing techniques are provided in the various cancer type sections in this guideline and SOPs. Laboratories should create a grossing job aids that are easily accessible at the grossing station.

Specimen reporting/Communication of final report

Synoptic reporting should be used, especially for ALL cancer resection specimens. This includes presence of cancer, histology type and grade, completeness of excision, involvement of margins, nerves, vessels, and lymph-nodes. These synoptic reports can be downloaded for free from the College of American Pathologists website (www.cap.org). Turnaround time for cytology, bone marrow aspirates and histology shall be within 7 days and 14 days respectively. For ancillary tests that might be required, a preliminary histology report can be issued in the meantime.

When results are ready, they should be promptly dispatched to the requesting clinician by designated appropriately-qualified professionals. Professionalism should be upheld by clinicians communicating between themselves. Results should preferably be reported online for ease of accessibility by the requesting clinician. A hard-copy should follow and a scan or photograph of the same may be electronically transmitted. Hard copy of the results should be archived in the laboratory. A standardized final report form template is provided in Appendix.

The requesting clinician is responsible for communicating the results to the patient. This should ideally be done in person with appropriate counselling services provided, along with recommendations for treatment and follow-up. Ancillary testing should be encouraged where resources permit, so as to generate as much possible diagnostic information for optimal and individualized treatment. An integrated specimen referral system for specimens requiring ancillary testing is recommended.

Specimen archiving

The processed sample should be appropriately archived to allow easy retrieval if a second opinion or further tests are required. Each of the histology laboratories should have SOPs for storage of specimens. Gross specimens, 3 months after final report is issued, paraffin tissue blocks 10 years indefinitely, stained slides 20 years, and final reports indefinitely. The SOP should also include information regarding disposal of the specimens and slides when required retention period is expired including release for research and museums. Any archived specimen belongs to the patient and should be made available on request. Any sample issued to the patient should be documented for accountability and medico-legal purposes.

Specimen referral

Effective communication is needed in referral networks to ensure efficient service provision. Documentation requirements should be defined and applied, including the satellite laboratory, collection points, the courier identity, and the referring laboratory. Standardized requisition forms should be used and must be completed accurately. Contracts/agreements should be in place for incoming referrals, outgoing referrals, and courier services. Specimens should only be transported by an approved and recognized courier service.

Specimen packaging

Often ground overnight shall be anticipated for FFPE samples, and packaging shall conform to IATA guidelines even if transported via ground courier. A completed sample requisition from (Appendix 1) and a material transit instruction form (Appendix 2) sample requisition shall accompany the specimen during transport. The material transit instruction form shall detail the expected transit conditions such as avoidance of breakages, spillage, spoilage (fragility, breakable, what side up, containment temperatures, etc.) by practice and use of labels. The standard protocol for packaging should be used that includes triple packaging and sturdy containers, transparent glass and plastic preferred. The lab should stock different sizes of containers and laise with the operating theatres for sample packaging containers procurement, distribution and user training.

Provision and standards shall be made regarding handling instructions for specimens in transits. These concern biohazard warning, fragility, transits temperatures, liquids contents (which side up) These shall be attached to packages and training done for all handlers.

Breast Biopsy Container Sizes

- Core Biopsies
- Small Biopsies
- Medium Biopsies
- Large/Mastectomy Biopsies

Referral Sustainability

Sustainability shall be entrenched in contractual agreements apportioning distribution of resource and liabilities, considering fairness in remuneration of personnel and institutions. An inventory of all laboratories, their capacities, and investigation types menu shall be maintained and reviewed annually. Referral networks shall be determined by these capacities and procurement contractual agreements. Contributions of institutions of higher learning (University Teaching Hospitals, Research institutes as KEMRI, and tertiary Hospitals, independent and private specialized laboratories, etc.) as terminal professional consultative forums shall be factored in recognition of their position as service providers, local and regional experts in clinical research implementation. Their position shall be factored in referral strategy planning and public external (international) outsourcing.

Logistics needed to manage specimen movement

These shall ensure SOPs on sample handling are adhered to as appropriate for site, and documented as necessary.
Basic Logistics Needed for Specimen Movement

<table>
<thead>
<tr>
<th>Service Unit</th>
<th>Human Resources</th>
<th>Commodities, Supplies, Equipment</th>
<th>Means of Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Units</td>
<td>Community Health Extension Workers</td>
<td>- Standard operating procedures for specimen collection, package, and movement</td>
<td>Motorised bicycle and motorbike, telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Personal protective clothing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Appropriate specimen containers and transport media</td>
<td></td>
</tr>
<tr>
<td>Primary Care</td>
<td>Nursing officers, Medical laboratory technologist and technician</td>
<td>- Standard operating procedures for specimen collection, package, and movement</td>
<td>Motorbike and bicycle, prepaid and contractual courier services, telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Personal protective equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Comprehensive laboratory supplies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Appropriate specimen containers and transport media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT infrastructure and capability</td>
<td></td>
</tr>
<tr>
<td>County Referrals</td>
<td>Nursing officers, Clinical and Medical officers, Medical laboratory technologist, health records, and information officers</td>
<td>- Standard operating procedures for specimen collection, package, and movement</td>
<td>Motorbike and utility vehicle, pre-paid and contractual courier services, telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Personal protective clothing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Comprehensive laboratory supplies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Appropriate specimen containers and transport media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT services (movement of results and reports)</td>
<td></td>
</tr>
<tr>
<td>National Referrals</td>
<td>Laboratory technologist, health records, and information officers</td>
<td>- Personal protective equipment</td>
<td>Motorbike and utility vehicle, international courier, telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Comprehensive laboratory supplies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Appropriate specimen containers and transport media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IT services (movement of results and reports)</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory specimen referral, as an integral part of the health care system, requires monitoring and evaluation. It incorporates routine collection and tracking of key data on the performance of a system to help identify problems in time for prompt correction. The identification of key network performance indicators and maintenance of records and information at all levels in the referral system is mandatory to ensure effective implementation of planned activities. Administrator or appointee shall identify Performance indicators of the referral network to be routinely be monitored to establish its efficiency and effectiveness. Evaluation of data is useful in decision making and quality improvements.

Indicators for the laboratory referral networks to include:

1. **Network effectiveness**
 - Number of samples sent from satellite sites
 - Number of samples sent to other facilities
 - Number of samples processed completely at site
 - The specimen rejection rate
2. **Turn indicators**
3. **Quality assurance - Internal Quality Control (IQC) and External quality assurance (EQA) performance**
4. **Proportion of counties with enabling information Technology infrastructure to support referrals**
5. **Number of Personnel and cadres oriented and trained in specimen referral guidelines**

The specimen management SOP shall be adhered to at all points.

Equipment Management

Proper laboratory equipment management ensures that appropriate equipment is procured, used, maintained and serviced following recommendations of quality policy manual for medical laboratory services in Kenya. These include reference materials, reagents, consumables and requisite computer programs/packages.

Basic consideration for equipment should be continuous service availability (zero-downtime), efficiency in resources utilization, sustainability and customer satisfaction.

The laboratory management shall manage equipment inventory and ensure all equipment have a management scheme from initial procurement, commissioning, training, maintenance and repair (a M&R logo shall be kept), materials and reagents supplies, and a retirement/replacement plan at end of its economic life.

Anticipated catchment workload determines initial equipment procurement with expansion and additions coming with experience and technologic advancements. Automation is necessitated by need to improve turnaround time, maintain customer satisfaction, safety and accessibility to the service.

Laboratory equipment need is dependent on Service delivery level, work load, personnel training and availability of materials and supplies; it's all directed to efficient utilization of resources to provide quality services that meet client satisfaction. For example, if quality and reliable ready to use distilled water, stains and reagent can be economically outsourced, corresponding basic equipment such as water distillers, stains and reagent preparation platforms, etc. can be omitted.

Some others as centrifuges, safety (hoods) chambers, tissue processors, microtomes and slide strainers are of variable manner and capacities, their procurement therefore highly individualized. Examples are that aspirate fluids from pleural and peritoneal cavities, bronchial-alveolar lavage and other cytology material when cancer is suspect. Their potential differentials diagnoses are communicable infectious diseases as fungi and mycobacterial thus requiring class 1 safety cabinets for processing. Similarly, many cell suspensions, watery lavages and fluids require concentration before transfer to slides while cyto-centrifugation may be used for low cellularity fluids as urine and CSF. Effusion and curettage material can be used to make cell blocks for histology. All these activities require specialized equipment whose capacity depend on catchment area and workloads.

All procured critical equipment shall be validated and commissioned on site and necessary training /induction of staff done simultaneously.
Human resource management policy guiding implementation standard operating procedure shall be employed at all levels

Skills and Cadres
Appropriately trained personnel, registered and licensed by their certified regulatory boards, and deployed in licensed participating Institutions shall be expected to work, adhering to national and international guidelines on skills, qualifications, numbers required and licensing requirements for each level of care. Deployment, orientation, capacity building, continuous improvement/competency testing shall be employed as appropriate for all staff cadre; surgeons and other clinicians, pathologists, histo-technologists, cytotechnologists, hematopathology technologists, Laboratory scientist, transporter and courier system and logistics personnel.

Laboratory safety
Laboratory procedures involve specimen collection, transportation and processing which pose a risk to the specimen itself, the handlers and environment. Good biosafety and biosecurity practices ensure that the laboratory worker, safety of the specimen and the environment are protected. Biosafety measures in referral networks shall comply with the universal safety precautions, waste segregation, and disposal protocols. Laboratories should carry out bio-risk assessments to identify risk factors associated with the integrated specimen referral networks. Each laboratory in the network shall have a biosafety officer who will coordinate all matters pertaining to biosafety and biosecurity practices including safety audits using standard checklists.

Quality assurance (QA)
Laboratories in the referral network should adhere to good laboratory practices. Laboratories should have a Quality Manager/Officer who is responsible for developing and executing a Total Quality Management (TQM) system consisting of internal quality control (IQC), external quality assurance (EQA), and continuous quality improvement (CQI). An SOP for non-conformance, corrective, & preventative action and root cause analysis (RCA) should be included as part of the TQM system. Establishing a TQM system reduces the chances of variability in the laboratory processes, testing and reporting.

Accreditation
Accreditation should follow ISO Standards and any other internationally or nationally recognized standards.

Audits
Internal and external audits
Multidisciplinary Tumour Boards (MDT) approach/tele-tumor boards Multidisciplinary tumour approach should be active in patient management and should include different specialties, including pathologists.

Ethical Practice
Appropriate technical practice and integrity in attitudes and behaviour in reference to moral values, is an integral part of quality laboratory practice. In suspected cancer cases and post diagnosis follow up management of cancer patients, an invalid result can be misleading and a liability to the entire patient management system, even occasioning direct harm. Dangers include loss of life, delayed treatment, litigation and financial implications. Invalid results statistics are misleading in improvement projection, jeopardizing current and projected planning process.

Pathologists, laboratory scientists, clinicians and participants in the specimen referral process are duty bound by values, ethical codes and regulations of their registering bodies. Concerns of ethical practice in cancer patient management include illegalities and actions contrary to conscience. The range is wide including personnel deployment, training, quality equipment, reagents and supplies, confidentiality and release of reports, information management, sub-optimal standards in health delivery, service fees and costs, etc.

The health system to which a patient prescribes needs to be a protector as asymmetry exists regarding knowledge of disease in patient-doctor relationship from inception of service planning guiding informed consent(s), range and choice of investigations/tests and their anticipated benefits, alternatives in disease management, costs and expectations in direct and third party payers, including whether and where to refer for other management.

The sample referral system has ethical obligation at many levels in addition to patient and guardian as it relates to clinicians and professional colleagues, institutions, and society. In all respect the autonomy of the patient/guardian, duty to act in patient’s best interests, to do no harm and remain in fairness, equity and justice to society at large.

All aspects of laboratory practice in diagnosis and later management of cancer patient shall have ethics embedded in quality service delivery.

A monitoring and corrective system shall be maintained with deliberate interaction with all professional bodies of involved participant

A deterrence method provided for unethical behaviour shall:
1. Develop an ethics policy and add it to the laboratory’s quality assurance manual.
2. Develop and implement an ethics training program for laboratory analysts.
3. Develop a fraud detection and deterrence program
4. Incorporate individual analyst log-in for instrument operation and data entry available at all computer and software audit trails
5. Have known penalties for non-compliance
6. Introduce and maintain training and adherence to the laboratory standard operating procedures and the promulgated method
7. Have a strong TQM program with complete data review, and QC summary sheet review with transcriptions review
8. Introduce and maintain Periodic data package review including electronic file reprocessing
9. Review of all audit trails and manual integrations

References
- Role of the National Oncology Reference Lab
- Licensing and regulation – Reference Health Act 2017
- Regulatory bodies – roles of KMPDB & KMLTTB
- Listing of accredited and recognized labs
- Research – access to samples, ethics
- Roles and responsibilities of various stakeholders from NCCS 2017-2022
Breast
Introduction

Sub-optimal fixing, handling and processing of breast specimens has been a chief source of inadequate pathology reports. Tissue handling including that of 10% neutral buffered formalin-fixed, paraffin-embedded (FFPE) tissue has a significant impact on the quality of intercellular and intracellular components, which may affect results of analyses performed on those specimens. With regard to breast specimens, these guidelines seek to:

1. Promote and ensure proper collection of high-quality tissue specimens such that each patient diagnosed with breast cancer can have a reliable, interpretable routine and molecular diagnosis;
2. Provide a known baseline of standardization of specimen collection and handling procedures, to the extent possible, such that more ancillary testing will be will possible; and,
3. Promote specimen collection that would allow for future technologies, particularly in the molecular arena, to be applied to these specimens for future applications.

Fresh/frozen tissue collection is susceptible to limited timelines for acceptable collection. However, as long as the general principles of rapid collection and freezing, as well as seamless integration with standard pathologic assessment are observed, these collection and analysis can be accomplished.

The table below shows specimen types and appropriate fixation

<table>
<thead>
<tr>
<th>Procedures</th>
<th>Specimen</th>
<th>Personnel Responsible for specimen collection</th>
<th>Diagnostic Utility</th>
<th>Level of facility</th>
<th>Fixative</th>
<th>Specimen Adequacy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNA</td>
<td>Aspirate</td>
<td>Cos, MO, surgeons, Pathologists</td>
<td>To assess lymph node involvement prior neoadjuvant chemotherapy</td>
<td>Level 4, 5 and 6</td>
<td>95% ethanol</td>
<td>2-6 slides, each with 3 minimum clusters</td>
<td>Only if Neo adjuvant treatment will be offered</td>
</tr>
<tr>
<td>Nipple Discharge smears</td>
<td>Smear imprint/touch cytology</td>
<td>Cos, MO, surgeons, Pathologists</td>
<td>For assessment of nipple pathology e.g benign papilloma versus malignant lesions</td>
<td>Level 4, 5 and 6</td>
<td>95% ethanol and air dried</td>
<td>Minimum 2 slides</td>
<td>Initial evaluation of nipple lesions</td>
</tr>
<tr>
<td>Wound impression Smears</td>
<td>Touch/imprint smears</td>
<td>Cos, MO, surgeons, Pathologists</td>
<td>A quick guide to diagnosis –</td>
<td>Level 4, 5 and 6</td>
<td>95% ethanol and air dried</td>
<td>Minimum 2 slides</td>
<td>can be as an initial test used to triage breast lesions</td>
</tr>
<tr>
<td>Wound excision/ ulcer edge biopsy</td>
<td>Tissue biopsy</td>
<td>MO, surgeons</td>
<td>For definitive diagnosis and ancillary testing</td>
<td>Level 4, 5 and 6</td>
<td>10% NBF</td>
<td>Minimum 0,5 mm</td>
<td></td>
</tr>
<tr>
<td>Core biopsy</td>
<td>Core tissue biopsies</td>
<td>MO, Surgeon Radiologist</td>
<td>Recommended primary diagnostic modality, grading, biomarker analysis</td>
<td>Level 4, 5 and 6</td>
<td>10% NBF</td>
<td>3-5 cores, 10-20 mm each</td>
<td>Fix immediately within one hour for 6-72 hours in 10X volume of specimen. Note: Good cores will sink in the fixative</td>
</tr>
<tr>
<td>Procedures</td>
<td>Specimen</td>
<td>Personnel Responsible for specimen collection</td>
<td>Diagnostic Utility</td>
<td>Level of facility</td>
<td>Fixative</td>
<td>Specimen Adequacy</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lumpectomy</td>
<td>Tissue excision biopsy</td>
<td>Surgeon</td>
<td>Definitive tissue diagnosis and treatment</td>
<td>Level 4, 5, 6</td>
<td>10% NBF</td>
<td>Adequate margin</td>
<td>immediately for 6-72 hours in 10X volume of specimen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary Excision biopsy of breast masses should only be considered when core biopsies are none revealing or inconclusive</td>
</tr>
<tr>
<td>Total Mastectomy +/− Lymph nodes</td>
<td>Whole Breast</td>
<td>General Surgeon or specialist breast surgeon</td>
<td>Definitive treatment for Extensive DCIS</td>
<td>Level 4,5,6</td>
<td>10% NBF</td>
<td>Adequate margins and slicing through tumor form skin surface</td>
<td>Fix immediately within 1 hour for 24-72 hours in 10X volume of specimen</td>
</tr>
<tr>
<td>Wide local excision (Excision less than total mastectomy), +/− Lymph nodes</td>
<td>Wide excision</td>
<td>Breast surgeon</td>
<td>Breast conservation</td>
<td>Level 6</td>
<td>10% NBF</td>
<td>Adequate margins</td>
<td>Fix immediately for 6-72 hours in 10X volume of specimen Radiotherapy Services available</td>
</tr>
<tr>
<td>Sentinel Lymph node</td>
<td>Either mastectomy or Breast conservation surgery</td>
<td>Breast Surgeon</td>
<td>Staging, determines further treatment</td>
<td>Level 6</td>
<td>10% NBF</td>
<td>Up to 2-3 lymph nodes</td>
<td>Used in clinically none palpable lymph nodes Safety precautions to be enforced</td>
</tr>
<tr>
<td>Mastectomy Post neo Adjuvant therapy +/− lymph nodes</td>
<td>Completion surgery post treatment</td>
<td>Breast surgeon</td>
<td>Response and staging</td>
<td>Level 5 and 6</td>
<td>10% NBF</td>
<td>Breast and adequate axillary lymph nodes</td>
<td>Reported according to post neo-adjuvant protocols (Appendix 3) Fix immediately for 6-72 hours in 10X volume of specimen</td>
</tr>
<tr>
<td>Fresh /Frozen Tissue</td>
<td>Margins, sentinel node</td>
<td>Breast surgeon</td>
<td>Margin assessment and sentinel node involvement</td>
<td>Level 6</td>
<td>Liquid Nitrogen/ or store at -80 Degrees</td>
<td>Margins appropriately labeled</td>
<td>Safety precautions to be enforced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tissue banking/ clinical trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further Considerations

1. FNAB/C specimens can also be used for cell block preparations for ancillary testing.
2. Image-guided core biopsies should be done for all breast lesions.
3. Cytology of nipple discharges, wound impression smears and wound edge biopsies may be of value for initial assessment.
4. In cases of Total Mastectomy and excisions less than total mastectomy, the surgeon should indicate the specimen laterality and orient the specimen for gross pathology trimming using long suture for lateral and short suture for superior surfaces. The container used should be wide mouthed and leak proof, where the specimen floats without squeezing to ensure easy retrieval.
5. The pathologist should section the specimen in 5 mm thick sections in the axis perpendicular to the long axis.

NOTE: If there will be a delay in grossing of the specimen due to transportation to a referral laboratory the surgeon/medical officer shall ensure that the specimen is properly sliced before immersion into 10% neutral buffered formalin.

Pathology Grossing of the breast

The general guidelines in grossing breast samples are applicable to all histology and are below expounded for specific breast handling procedure.

1. Use the axillary tail and skin to orient the specimen
2. Ink the deep margin
3. "Bread-loaf" at 5mm intervals
4. Submerge in the 10% neutral buffered formalin(NBF) for a minimum of 8 to 12 hours
5. The recommended maximum fixation time is 72 hours

Examination of the Specimen

The following should be recorded and described:

1. Dimension of specimen and skin ellipse
2. Localization, dimension of tumor
3. Margins of tumor
4. Distance from overlying skin deep and closest margin
5. Surrounding breast, Nipple areola and overlying skin
6. If previous biopsy site/cavity present, describe, appearance and location. Also note the presence of any residual tumor

The diagram below shows a breast specimen before and after sectioning as recommended.
Handling of Axillary lymph node dissection
A minimum of 10 axillary lymph nodes are recommended for adequate axillary dissection specimen. Each node should be submitted in a separate tissue cassette. For grossing purposes, an abnormal node should be bisected and one half submitted. Nodes equal to or smaller than 5 mm should be submitted in whole.

Handling of Sentinel lymph node
In the event that sentinel node examination infrastructure is in place, specimen nodes brought to the laboratory must be sliced at 2 mm interval and touch imprints and scrape cytology can be performed as well as frozen sections for pathologist review. Each 2 mm permanent section of the node/s should be examined.

The table below shows the main biomarkers performed on breast specimens in ancillary testing:

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Method</th>
<th>Indication</th>
<th>Preferred Specimen</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>IHC</td>
<td>Routine</td>
<td>Core biopsy</td>
<td>Predictive and prognostic</td>
</tr>
<tr>
<td>PR</td>
<td>IHC</td>
<td>Routine</td>
<td>Core biopsy</td>
<td>Predictive and prognostic</td>
</tr>
<tr>
<td>HER 2</td>
<td>IHC/FISH/DISH</td>
<td>Routine</td>
<td>Core biopsy</td>
<td>Predictive and prognostic</td>
</tr>
<tr>
<td>Genomic (Recurrence Score)</td>
<td>Oncotype DX, PAM450</td>
<td>Early breast cancer ER/PR positive, HER2 negative,</td>
<td>FFPE specimen</td>
<td>Risk of recurrence and predictive</td>
</tr>
<tr>
<td>BRCA 1 and 2, PALB mutations</td>
<td>Molecular</td>
<td>High Risk family history, young patients</td>
<td>Saliva, Blood</td>
<td>Identification of high risk and prophylactic therapy</td>
</tr>
</tbody>
</table>

Breast specimen/BCT margin evaluation

References
1. Recommendations for Collection and Handling of Specimens From Group Breast Cancer Clinical Trials https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651095/
2. 2002 Standards, Options and Recommendations: good practice for the management and shipment of histologic and cytopathological cancer specimens.
Gynaecologic Cancers

1. Cervix
2. Endometrium
3. Ovary
A: CERVIX

In order to accurately diagnose cervical cancer, the following samples are usually collected and submitted to the laboratory for analysis:

i. Cervical smears (Conventional Pap smears and/or Liquid-based cytology & HR HPV detection)
ii. Punch biopsy
iii. Cone biopsy
iv. LEEP/LLETZ biopsy
v. Hysterectomy

<table>
<thead>
<tr>
<th>Specimen type</th>
<th>Nature of sampling</th>
<th>Personnel</th>
<th>Laboratory handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Smear</td>
<td>1. Conventional alcohol fixed smear on a glass slide</td>
<td>Trained healthcare worker, Self-collection (HPV)</td>
<td>All processed</td>
</tr>
<tr>
<td>Cervical (Pap) smear</td>
<td>2. Cervical sample in a liquid based medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Self-collected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punch biopsies</td>
<td>Few mm, from visible cervical lesions during screening (VIA/VILLI), Colposcopy and EUA</td>
<td>Gynaecologist, Trained MOs/Cos</td>
<td>All processed</td>
</tr>
<tr>
<td>LEEP/LLETZ biopsies</td>
<td>Electrocautery excisions of the cervical transformation zone</td>
<td>Gynaecologist</td>
<td>Superficial and Deep tissues processed separately</td>
</tr>
<tr>
<td></td>
<td>Submitted separately as Superficial and Deep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cone biopsy</td>
<td>Conical excision of the cervical canal (laser or cold knife excision).</td>
<td>Gynaecologist</td>
<td>All processed sequentially (As per protocol below)</td>
</tr>
<tr>
<td>Radical Hysterectomy</td>
<td>Removal of uterus, cervix, vaginal cuff, parametria and regional lymph nodes (Left, right pelvic & paraaortic)</td>
<td>Gynaecologist</td>
<td>Processed as per protocol below</td>
</tr>
</tbody>
</table>

1. CERVICAL (PAP) SMEARS

i. **Conventional smears**

- Requirements for sample collection: Fixative (Absolute alcohol), Cyto brush, Microscope glass slide, speculum
- Fixation in absolute alcohol immediately
- Sample and properly filled requisition form are submitted to laboratory for processing.
- Papanicolaou staining is done as per SOP (Appendix) Slide is examined and reported (Appendix report format) Report is submitted to requesting clinician

ii. **Liquid based preparation**

- Brush/swab placed immediately in preservative liquid medium
- Sample submitted to laboratory for processing
- Cytospinning and cells concentrated
- Smears are PAP stained or analyzed for HPV

2. PUNCH BIOPSY

- Once collected the sample is immediately fixed in 10% NBF
- Allow fixation for a minimum of 6 hours
- Sample is grossed - Number, size(s), colour and general Appearance
- Processing, embedding, sectioning and staining is done as per SOPs
- Examination and Reporting
- Dispatch of results to requesting clinician

3. CONE BIOPSY

A cervical cone biopsy is a conical excision of the cervical canal performed with either a laser or a surgical blade (cold knife excision). The wider part of the cone is the outer ectocervix, and the tapered end is the endocervical margin.

- **Orientation** - By convention, the ectocervix is described as a clock face with the most superior midpoint of the anterior lip designated as 12 o'clock. This point is usually marked with a stitch by the gynaecologist

- **Measure**
 i. the length of the cone biopsy corresponding to the endocervical canal,
 ii. the diameter at the endocervical margin, iii. the diameter at the endocervical margin

- In the exposed fibrous stroma and the ectocervical mucosal margin. Use a different colour to ink the endocervical mucosal margin.
• Make a longitudinal incision through the outer stroma to the inner canal at the 3-o’clock position, and open the specimen so that the inner mucosal surface is exposed.
• Examine the mucosal surface, and look for any lesions, especially along the squamocolumnar junction.
• Cut serial full-thickness sections perpendicular to the mucosal surface in the plane of the endocervical canal. The sections should be 0.2 to 0.3 cm wide and will end up being slightly wedge-shaped.
• All sections should be submitted sequentially and designated as to their clock-face orientation, i.e. 12-3, 3-6, 6-9 and 9-12 o’clock. Submit a maximum of one to two sections per block.

4. RADICAL HYSTERECTOMY
Sample collected from surgical treatment of early cervical cancer
• Begin by orienting, measuring, and weighing the uterus and cervix
• Measure the size of the attached parametrial/paracervical tissue and length of the attached vaginal cuff.
• Ink the right and left parametrial/paracervical tissues, the anterior/posterior soft tissue margins of the cervical canal, and the vaginal cuff margin.
• Remove the parametrial/paracervical tissue by shaving each side close to its lateral attachment on the cervix. Thereafter, section the tissue at 3mm intervals, and submit the entire tissue for histologic examination.
• Any identifiable lymph nodes may be dissected and separately designated.
• Amputate the cervix at the level of the internal os, and open the canal with a longitudinal incision opposite the tumour. (Pin it open, and fix it as you would a cone biopsy.)
• Measure the maximum tumour width and length as well as the distance to the nearest vaginal margin. Examine the vaginal cuff. Unless the tumour is close to the vaginal margin, the margin may be removed with 3mm parallel shave and submitted as four designated quadrants.
• If the tumour closely approaches the vaginal margin, leave the vaginal cuff intact and take perpendicular margins to demonstrate the relationship of the tumour to the margin.
• Serially section the cervix at 3mm intervals and measure the maximum tumour thickness as well as the thickness of the cervical wall at that site.
• Take a transverse section of the lower uterine segment and bivalve the uterus into anterior and posterior halves. Examine the corpus with serial transverse sections
• Take representative sections from superior extent, inferior extent, and parametrial/paracervical and vaginal margins for microscopic analysis
• The anterior and posterior cervical soft tissue margins should be submitted to delineate the extent of the tumour in relationship to the bladder and rectum.
• Lymph nodes are usually submitted from the right and left pelvic nodes and para-aortic node groups.

Surgical Pathology report – minimum dataset
Procedure Tumour size Histologic type Histologic grade Depth of invasion
Paracervical tissue/vaginal cuff/parametrial involvement Lymphovascular invasion Pelvic Lymph nodes – Left, Right & para-aortic –
- Number involved, Extranodal extension
Margins status-Parametrial (Left/Right),Vaginal Cuff, pathological staging
Cone Biopsy

1. Orient the specimen with the stitch at 12 o’clock.
2. Ink the endocervical margin and the stromal/ectocervical margins with separate colors.
3. Open at 3 o’clock, pin on a wax or cork board, and fix.
4. After fixation, take serial, 2- to 3-mm-thick sections as shown.
5. Submit the entire specimen sequentially. For example, block A = two sections from 12 to 3 o’clock; block B = two sections from 3 to 6 o’clock, etc.

Section demonstrating a continuous line from the ectocervix to the endocervix.
Radical Hysterectomy for Cervical Cancer

1. Orient the uterus: The round ligaments are most anterior, and the ovaries, if present, are most posterior. The peritoneum extends further posterior along the posterior uterus than it does anteriorly.

2. Remove the bilateral parametrial/paracervical tissues, and section them separately at 0.3 cm intervals.

3. Amputate the cervix, and open it like a cone biopsy. Section the entire cervix longitudinally at 0.5 cm intervals. Document the size and depth of invasion of the tumor.

4. Shave the vaginal cuff margin.

5. Take a transverse section of the lower uterine segment, then bisect the uterine corpus and broad-ligate it at 0.5 cm intervals.

6. Submit full-thickness sections of tumor and one section of each uninvolved cervical quadrant. Include vaginal margins, anterior and posterior soft tissue margins, right and left parametrial/paracervical tissues in their entirety, transverse sections of the upper endocervix and lower uterine segment, and standard sections of anterior and posterior endometrium.

Loop Electrocautery Excisions of the Cervix

1. Orient the specimen by identifying the ectocervical and endocervical margins.

2. Ink the endocervical margin and the stromal/ectocervical margins with separate colors.

3. For small cylindrical specimens, divide in half and section longitudinally.

4. For shallow, saucer-shaped specimens, section radially—like a pie.

5. Submit the entire specimen.
B: ENDOMETRIUM

Introduction

Risk of endometrial cancer is related to increasing age, late menopause, never giving birth, infertility, obesity, diabetes, high blood pressure, estrogen treatment, or tamoxifen therapy. Women with hereditary non-polyposis colon cancer (HNPCC)/Lynch syndrome have a very high risk of endometrial cancer.

The most common presenting symptom is abnormal uterine bleeding. Other symptoms are pain, weight loss and abdominal mass. Diagnosis is made by way of endometrial biopsy for histology examination. Endometrial biopsy may involve taking a sample from the cervix as well, called fractional curettage. Ultrasound examination to assess the endometrial cavity can also be helpful. The treatment modalities of confirmed cancer are surgery, chemotherapy, radiotherapy and hormonal therapy. Endometrial carcinoma may share histologic features with ovarian carcinoma.

Specimen types

1. Curettings/pipelle biopsy
2. Hysterectomy

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Indication</th>
<th>Fixation</th>
<th>Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curettings</td>
<td>Gynaecologist/ medical officers</td>
<td>Diagnosis</td>
<td>Fix immediately Level IV, V, VI</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>Gynaecologist</td>
<td>Treatment</td>
<td>Fix immediately Level IV, V, VI</td>
</tr>
</tbody>
</table>

Specimen handling

1. Curetting & pipelle biopsy-
 A. Sample is immediately fixed in 10% NBF and submitted to the laboratory accompanied by duly filled requisition form
 B. Allow fixation for a minimum of 6 hours
 C. Sample is grossed – Number, size(s), colour and general appearance
 D. All the sample is Processed, embedded, sectioned and stained as per SOPs
 E. Examination and Reporting
 F. dispatch of results to requesting clinician

2. Uterus

Uterus is removed as part of surgical treatment of endometrial cancer diagnosed through either curettings or pipelle biopsies. Proper handling of this sample is essential for confirmation of the diagnosis, determination of the grade and stage of the cancer to enable optimal care.

GROSSING HYSTERECTOMY SPECIMENS-

1. The specimen is fixed in 10% BNF for a minimum of 6 hours.
2. Orient, weigh, and ink the soft tissue resection margins around the cervical canal.
3. Ink the parametrial tissue, which extends along the body of the uterus and into the broad ligament.
4. If the adnexa are present, remove them at their lateral insertions along the uterus.
5. Make multiple transverse cuts through the ovary and fallopian tube, looking for evidence of either direct tumour extension or metastatic spread. Submit at least one section from each side to demonstrate the ovary and fallopian tube with adjacent soft tissue.
6. Bivalve the uterus by using a long, sharp knife guided by a probe placed through the cervical canal. Closely examine the endometrial cavity and describe the findings. While the tumour is fresh, remove a portion to freeze for future molecular diagnostic tests if desired. The bivalved uterus may now be photographed.
7. The dissection begins with longitudinal sectioning of the cervix. Extend these incisions to the lower uterine segment to include both endometrial and endocervical mucosal surfaces.
8. Note whether or not the tumour grossly involves the endocervical mucosa and/or stroma. Submit a section of this region from the anterior and posterior halves to evaluate for tumour extension into the cervix, an important factor in determining the stage of the cancer.
9. Serially bread-loaf the uterine corpus and lower uterine segment with transverse sections. Record the size, location, and appearance of the tumour.
10. Describe the pattern of invasion. Does the tumour have a broad pushing front, an infiltrating finger-like pattern, or is it discontinuous?
11. Measure the greatest depth of tumour invasion into the myometrium starting from the normal junction of the endometrium and the myometrium. In addition, measure the total myometrial thickness at this point, and specify the uninvolved distance from the deep tumour/myometrial junction to the serosa.
12. When selecting sections for histologic analysis, include the deepest point of tumour invasion as well as the interface with grossly uninvolved endometrium.
13. The best sections are those that show the full thickness from the endometrium to the serosa. Sometimes, however, the myometrium may be too thick to fit in a standard-size tissue cassette. In these situations, divide the section into endometrial and serosal halves. Designate their relationship clearly in your summary of sections.
14. Lymph nodes from the pelvic and para-aortic regions may also be included as separate specimens.
Minimum reporting items in the surgical report

1. Procedure and what structures/organs are present.
2. Tumour size.
3. Histologic type and grade of neoplasm.
4. Maximum depth of tumour invasion (in millimeters)- Measured from the normal endometrial/myometrial junction.
5. Myometrial thickness at the deepest point of invasion (in millimeters).
6. Distance from the deepest tumour/myometrial junction to the serosa (in millimeters).
7. Whether tumour extend through the serosa.
8. Involvement of endocervix. (Specify surface glandular and/or stromal involvement.)
9. Lymphovascular space invasion seen.
10. Adnexa involvement.
11. Lymph node involvement
12. Margins (cervical/vaginal, right paracervical/parametrial, left paracervical/parametrial). Distance of the tumour from closest margin (in centimeters).
13. Lymph nodes involvement (Include the number of nodes involved and the number of nodes examined at each specified site.)

References
1. National Cancer Screening Guidelines – Kenya

C: OVARY

Ovarian cancer is the sixth most common cancer in women and the seventh most common cause of cancer death. More than 90% of primary ovarian cancers are of epithelial origin. The other types are Germ cell tumours, Sex cord stromal tumours, lymphoproliferative neoplasm and secondary (metastatic) lesions especially from the GIT.

Ovarian cancer presence as pelvic discomfort, pelvic or lower abdominal mass and ascites. When suspected, the patient undergoes a laparotomy followed by removal of the ovarian mass with or without the removal of the uterus and ovary/tube.

Special considerations should be put to the proper handling of ovarian tumour specimens to ensure that all the diagnostic and prognostic data are captured.

Handling

The specimen is fixed in 10% neutral buffered formalin

Gross Description

- Document the weight and dimensions of the specimen. Also describe and measure the other structures included (Uterus, fallopian tube, omentum)
- Examine the surface for evidence of rupture, adhesions, or nodular tumour excrescences. If present, these are inked for orientation.
- Section the ovarian mass at 1-cm intervals through its longest axis
- Document the colour and consistency of the cyst fluid (serous, mucinous, or haemorrhagic)
- Document whether the mass is solid, cystic, or both (document the percentage of each region)
- Examine the surfaces of the cysts for evidence of granularity, nodules, or papillary projections. Record the thickness of the cyst walls
- Describe any regions of haemorrhage or necrosis. Try to find any residual ovarian parenchyma. (Mostly in the region immediately adjacent to the fallopian tube.)
- Submit the tumour sections- from solid, haemorrhagic or necrotic regions- with a minimum of one section per 1 to 2 cm of the greatest tumour dimension. (If the tumour is uniform throughout, fewer sections may be prudent.)
- Cysts that show granular, nodular, or papillary excrescences should be thoroughly sampled.
- Omentectomy specimens should be weighed, measured, and serially sectioned at 0.5-cm intervals to look for gross tumour nodules. Measure the size of the gross tumour and specifically indicate if it is 2 cm or less or more than 2 cm for staging purposes.

<table>
<thead>
<tr>
<th>Ovarian cystectomy</th>
<th>Removal of the cyst only (Mostly for benign tumours)</th>
<th>MO/Surgeon/Gynaecologist</th>
<th>Level IV, V, VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oophorectomy</td>
<td>Removal of ovary with tumour (Can be unilateral or bilateral)</td>
<td>Gynaecologist</td>
<td>Level IV, V, VI</td>
</tr>
<tr>
<td>Salpingo-oophorectomy</td>
<td>Removal of ovaries and the attached fallopian tubes.</td>
<td>Gynaecologist</td>
<td>Level IV, V, VI</td>
</tr>
<tr>
<td>Hysterectomy and salpingo-oophorectomy</td>
<td>Removal of ovaries together with uterus and fallopian tubes</td>
<td>Gynaecologist</td>
<td>Level IV, V, VI</td>
</tr>
<tr>
<td>Oophorectomy and omentectomy</td>
<td>Removal of ovaries and omentum</td>
<td>Gynaecologist</td>
<td>Level IV, V, VI</td>
</tr>
</tbody>
</table>
Summary of Data set for reporting Ovarian Carcinoma

The request form should provide:
- Patient’s demographics
- Prior chemotherapy
- Specimen type
- Previous cytology/biopsy results
- Capsule status at surgery
- Previous tumor markers where applicable

Macroscopic examination
- Specimen visual appearance and consistency as submitted and the dissection surface
- Capsule status
- Tumor site and size
- Dimensions of omentum if submitted
- Size of maximum omental deposits if present
- Number and sizes of other tissues submitted with the ovary

Microscopy
- Tumor type
- Grade
- Sites of involvement
- Peritoneal cytology
- Lymph node status
- Provision of FIGO/TNM staging
- For borderline tumors, provide micropapillary architecture and presence of implants

Please find use this link to access the complete data set for Ovarian Cancer reporting:
www.rcpath.org

References
a. CAP Guidelines 2018
Prostate Cancer
Introduction
Proper handling of the prostatic specimen is extremely crucial for an accurate diagnosis, hence the importance of a clinician’s manual to provide guidance. There is need for multidisciplinary sensitization and training in prostatic specimen procurement, handling and reporting as this greatly impacts on the usefulness of the final pathology report.

Sampling institutions are encouraged to develop a clinician manual to address aspects of prostate biopsies with regard to quality, adequacy, preservation, and transport to the laboratory.

Specimen type/procedures
- Needle Biopsy- This should be performed by the urologist, general surgeon, intervention radiologist or a medical officer trained in this procedure. The procedure can be done either under image or finger guidance and should be 6 to 12 cores of at least 1cm in length each.
- Transurethral Prostatic Resection (TURP)- This should be performed by the urologist, general surgeon trained in this procedure.
- Suprapubic or Retropubic Enucleation (Subtotal Prostatectomy) - This should be performed by the urologist, general surgeon trained in this procedure.
- Radical Prostatectomy - This should be performed by the urologist.

Specimen handling and sampling.
All specimens should immediately be fixed in 10% neutral buffered formalin for a minimum of 6 hours in sufficient volumes of fixative (10 times or more of the sample).

- Needle biopsies
 All cores should be sampled and submitted as two cores per cassette. The number and length in millimetres (longest and shortest) should be indicated in the request form.

- TURP/Enucleation
 Specimens that weigh 12 g or less should be sampled in their entirety in 6 to 8 cassettes while for those more than 12g the initial 12 g (15GM) are submitted (6 to 8 cassettes), and 1 cassette may be submitted for every additional 5g may be submitted. In case of incidental malignancy, the entire specimen should be sampled.

- Radical Prostatectomy
 This specimen should include the prostate, seminal vesicles, prostatic urethra, bladder neck and lymph nodes. The surgeon should orient the specimen by labelling the margins. In the laboratory, the margins should be painted or otherwise marked. The specimen may be sampled in its entirety or partially sampled in a systematic fashion. This should be done in line with the attached protocol. The image below shows a radical prostatectomy specimen and how it should be grossed.

Report
The Pathology reports will be in line with the protocols modified from the CAP protocols. In summary, all reports will provide the following:

a. NEEDLE BIOPSY reports should include:
 - Patient identifiers and clinical information
 - Specimen description including number of cores and dimensions in cm
 - Qualities of the biopsy
 - Tumour histologic type
 - Intraductal carcinoma
 - Tumour quantity (in mm or percentage)
 - Tumour grade (gleason score and isup\who\ grade group\cap guidelines
 - Lymphovascular invasion
 - Periprostatic fat invasion
 - Perineural invasion
 - Pre - treatment effects
 - Other pathological processes.

b. TURP/ENUCLEATION biopsies positive for malignancy should include:
 Patient identifiers and clinical information
 Specimen description including weight and dimensions in centimetres
Qualities of the biopsy
- Tumour histologic type
- Tumour quantity (estimate % of turp chips involved by tumour/size of tumour in mm in enucleation)
- Tumour grade (gleason score and isup/who grade group/cap guidelines)
- Lymphovascular invasion periprostatic fat invasion perineural invasion
- Treatment effects (radiation/hormonal/other therapy effects)
- Other pathological processes.

c. Radical Prostatectomy reports should include:
- Patient identifiers and clinical information
- Specimen description as per grossing protocol see appendix
- Tumour histologic type
- Tumour quantity
- Tumour grade (gleason score and isup grade/who grade group)
- Lymphovascular invasion periprostatic fat invasion perineural invasion
- Urinary bladder neck invasion
- Seminal vesicle invasion (invasion of muscular wall required)
- Margins
- Regional lymph nodes. (Number of lymph nodes submitted. Number of lymph nodes involved. Extranodal extension
- Pathologic tumour stage/tmtn treatment effects
- Other pathological processes

The images below show the microscopic description of the Gleason Pattern Scoring system for cancer of the prostate

<table>
<thead>
<tr>
<th>ISUP grade group</th>
<th>Gleason score</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade group 1</td>
<td>3+3 = 6</td>
<td>Histomorphologically made up of distinct well delimited glandular ducts.</td>
</tr>
<tr>
<td>Grade group 2</td>
<td>3+4 = 7</td>
<td>Histomorphologically principally made up of distinct glands with minor constituent of defectively shaped, merged or cribriform glandular ducts.</td>
</tr>
<tr>
<td>Grade group 3</td>
<td>4+3 = 7</td>
<td>Histomorphologically principally made up of defectively shaped, merged or cribriform glandular ducts with minor constituent of distinct glands.</td>
</tr>
<tr>
<td>Grade group 4</td>
<td>4+4 or 3+5 or 5+3 = 8</td>
<td>Histomorphologically principally made up of defectively shaped, merged or cribriform glandular ducts or principally a mix distinct glands and no glandular formation.</td>
</tr>
<tr>
<td>Grade group 5</td>
<td>9-10</td>
<td>Histomorphologically tumor lacks glandular formation (or necrotic glands) with or devoid of defectively shaped.</td>
</tr>
</tbody>
</table>

References
1. CAP Guidelines 2018
2. WHO/ISUP group grading for prostate cancer
Oesophageal Cancer
Introduction

Esophageal cancer is a leading cause of death in both sexes in Kenya, has poor prognosis when presenting late. It has a long pre-invasive period when diagnosis can be made from early endoscopy and biopsy. Pre-cancerous states have similar progression as other squamous intraepithelial lesions and are amenable to cytologic evaluation. Patients frequently present late for endoscopy, but have frequently been treated for variable periods prior, in health facilities, where clinical suspicion was low.

Esophageal specimens are generally small. Optimal handling is required to avoid a partial or complete loss of specimen at processing.

Esophageal brush or wash cytology specimens are possible, but not frequently performed in our health setting early esophageal cancer diagnosis shall improve the prognosis and, and reduce morbidity and mortality.

Diagnostic Workup

- Detailed history and physical examination: Dysphagia, odynophagia, hoarseness, weight loss, use of tobacco, nitrosamines, history of GERD. Examine for cervical or supraclavicular adenopathy.

- Confirmation of diagnosis:
 - EGD: allow direct visualization and biopsy, measure proximal & distal distance of tumor from incisor, presence of Barrett’s esophagus.

- Specimen handling

 The specimen will be fixed in 10% neutral buffered formalin for a minimum of six hours.

 - Endoscopic biopsy will be processed in its entirety.

 1. Record the location of the tumor in the esophagus (cervical, upper thoracic, middle thoracic, lower thoracic, abdominal) with respect to the macroscopic esophageal gastric junction (EGJ) (defined as where the tubular esophagus meets the stomach, as measured from the top of the gastric folds).

 2. Record the maximum longitudinal and transverse dimension of the tumor mass, the distance of the tumour midpoint from the EGJ, and the relative proportions of the tumour mass located in the esophagus and in the stomach.

 3. Paint the circumferential surface, proximal and distal margins of the specimen to assist in evaluation of margin status.

 4. Sample the tumor ensuring that the tumor is sampled at point of maximal invasion, distal, proximal and radial margins, surrounding esophagus and any other lesion of interest.

Endoscopic biopsies

Biopsies shall be 4-6mm in aggregate and be representative of the Lesion. This requires proper correlation with endoscopic, clinical and imaging findings.

Specimen handling

The specimen will be fixed in 10% neutral buffered formalin for a minimum of six hours.

- Endoscopic biopsy will be processed in its entirety.

 5. Measure the distance from the tumour edge to the closest resection margin(s) if all margins are uninvolved by invasive carcinoma.

 6. Proximal and distal resection margins should be evaluated for Barrett’s esophagus and for squamous and glandular dysplasia if they are not involved by invasive carcinoma.

 7. All lymph nodes submitted should be sampled and counted

<table>
<thead>
<tr>
<th>Type of specimen</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoscopic biopsy</td>
<td>Gastroenterologist, surgeon, or trained medical officer</td>
</tr>
<tr>
<td>Resection specimen (esophagectomy/Esophagogastroctomy)</td>
<td>Surgeon/ cardiothoracic surgeon</td>
</tr>
</tbody>
</table>
Protocol for the Examination of Resection Specimens from Patients with Carcinoma of the Oesophagus (MINIMUM DATA SET)

- Tumour Site (select all that apply)
- Relationship of Tumour to Esophagogastric Junction
- Tumour Size
- Histologic Type
- Histologic Grade (required only if applicable)
- Tumour Extension
- Margins
- Response to Previous therapy
- Response of tumour to previous chemotherapy or radiation therapy should be reported using the modified Ryan Scheme

Modified Ryan Scheme for Tumour Regression Score

<table>
<thead>
<tr>
<th>Description</th>
<th>Tumour Regression Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No viable cancer cells (complete response)</td>
<td>0</td>
</tr>
<tr>
<td>Single cells or rare small groups of cancer cells</td>
<td>1</td>
</tr>
<tr>
<td>(near complete response)</td>
<td></td>
</tr>
<tr>
<td>Residual cancer with evident tumour regression, but more than single cells or rare small groups of cancer cells (partial response)</td>
<td>2</td>
</tr>
<tr>
<td>Extensive residual cancer with no evident tumour regression (poor or no response)</td>
<td>3</td>
</tr>
</tbody>
</table>

Location plays a role in the stage grouping of oesophageal squamous cell carcinomas:

<table>
<thead>
<tr>
<th>Location Category</th>
<th>Location Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Location Unknown</td>
</tr>
<tr>
<td>Upper</td>
<td>Cervical oesophagus to lower border of azygos vein</td>
</tr>
<tr>
<td>Middle</td>
<td>Lower border of azygos vein to lower border of inferior pulmonary vein</td>
</tr>
<tr>
<td>Lower</td>
<td>Lower border of inferior pulmonary vein to stomach, including gastroesophageal junction</td>
</tr>
</tbody>
</table>

Note: Location is defined by the position of the epicenter of the tumour in the o.

Stage Groupings: Squamous Cell Carcinoma. See CAP/Other current links
Stage Grouping: Adenocarcinoma
Stage Grouping: ypTNM (applies to both squamous and adenocarcinomas)

Ancillary testing: MSI and HER2 overexpression:
These can be done for patients with locally advanced or recurrent or metastatic adenocarcinoma for whom Trastuzumab is being considered, or in patients who are candidates for treatment with PD1 inhibitors.

References
CAP Cancer Protocols 2018
Colorectal Cancer
Introduction
Screening for colon cancer has different modalities as outlined in the National cancer screening guidelines (2019). Mainstay for diagnosis is colonoscopy with biopsy / polypectomy. Colonoscopy must be on a fully prepared bowel to allow adequate visualization of the entire large bowel for purpose of assessing synchronous and metachronous lesions.

During colonoscopy, the lesion must be fully described in terms of number site/distance from the anal verge and nature (ulcerated, haemorrhagic, fungating or polypoid). For more than one lesion, biopsy should be submitted separately and clearly labelled as to the site. Penduculated lesions should be fully excised (total polypectomy). Adequate sampling for punch biopsies should be performed (6-8 fragments). The specimen should be immediately and fully submerged in fixative. Patients diagnosed with cancer should have a staging modality done which includes a chest x-ray and abdomino-pelvic CT scan prior to surgery. All cases must be presented and discussed in a multidisciplinary tumor board at the institution or teleconference for adequate treatment planning. Locally advanced and metastatic disease with no complication of bleeding or obstruction may be amenable to neoadjuvant chemo radiotherapy. Surgery may be for curative or palliative intent. Curative colon surgery must include adequate lymphnode harvest and negative margins. The resection specimens should be submitted as a whole to the laboratory fully immersed in formalin ratio 1:10.

Specimen types
1. Polypectomy
2. Endoscopic punch biopsy
3. Resection

Specimen handling
1. Punch biopsy- processes all.
2. Polypectomy – ink stalk margins and process the entire specimen
3. Resection specimens

The specimen should be left in formalin for a minimum of six hours before grossing. During grossing describe the size of the specimen, the site of the tumour and resection margins. Specimen should be processed according to attached protocol (appendix)

GROSSING COLORECTAL RESECTION SPECIMENS
1. Specify the site of tumour - the right (cecum, ascending), transverse, left or sigmoid colon, rectum or small intestine.
2. Tumors within the non- distal portion and by definition all tumors within 16cm of the anal verge are rectal. For rectal tumors, the location of the tumor is relative to peritoneal reflection.
3. When present the radial margin should be inked fresh. For rectal tumors, ink the soft tissue margin beneath palpable tumor.
4. Open specimen longitudinally with scissors. Avoid cutting through the tumor by using your index finger placed inside the lumen to palpate for the tumor.
5. Identify all mesenteric nodes. Divide nodes into those subjacent to the tumor, proximal to tumor and distal to tumor. If a mesenteric apex can be identified, submit nodes from it separately. All grossly negative lymph nodes should

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Indication</th>
<th>Fixation</th>
<th>FACILITYs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypectomy</td>
<td>Surgeon /gastroenterologist</td>
<td>Diagnosis / treatment</td>
<td>Fix Immediately</td>
</tr>
<tr>
<td>Endoscopic punch biopsy</td>
<td>Surgeon /gastroenterologist</td>
<td>diagnosis</td>
<td>Fix Immediately</td>
</tr>
<tr>
<td>Resection</td>
<td>Surgeon</td>
<td>Treatment / staging</td>
<td>Fix Immediately</td>
</tr>
</tbody>
</table>

Personnel
Indication Fixation FACILITYs
Polypectomy Surgeon /gastroenterologist Diagnosis / treatment Fix immediately Level IV, V, VI
Endoscopic punch biopsy Surgeon /gastroenterologist diagnosis Fix immediately Level IV, V, VI
Resection Surgeon Treatment / staging Fix immediately Level V, VI,
Minimum reporting items in the surgical report

1. Excisional Biopsy (Polypectomy)
- **Tumor Site** (Caecum, sigmoid etc.)
- **Specimen Integrity** (Intact, fragmented)
- **Polyp Size**
- **Polyp Configuration** (Pedunculated with stalk, Stalk length, Sessile)
- **Size of Invasive Carcinoma**
- **Histologic Type** (mucinous, signet ring etc.)
- **Histologic Grade**
- **Tumor Extension** - invasion to the wall
- **Margins Deep Margin** (Stalk Margin), Mucosal Margin (required only if applicable)
- **Lymphovascular Invasion** (select all that apply)
- **Type of polyp in which invasive carcinoma arose** (tubular, villous etc.)

2. Resection
- **Procedure** (right hemicolecctomy, sigmoidecctomy, etc.)
- **Tumor Site** (cecum, T=transverse colon, etc.)
- **Tumor Location** - entirely above the anterior peritoneal reflection, entirely below the anterior peritoneal reflection or straddles the anterior peritoneal reflection
- **Tumor Size**
- **Macroscopic Tumor Perforation**
- **Macroscopic Intactness of Mesorectum** (if applicable) – complete, nearcomplete, incomplete
- **Histologic Type**-adenocarcinoma, mucinous adenocarcinoma
- **Histologic Grade**
- **Tumor Extension**- to the wall or adjacent organs
- **Margins** (proximal margin, distal margin, radial or mesenteric margin)
- **Lymphovascular Invasion**
- **Perineural Invasion**
- **Type of Polyp in Which Invasive Carcinoma Arose**
- **Tumor Deposits**
- **Regional Lymph Node**
 - number of lymph nodes submitted or found
 - number of lymph nodes involved:
 - number of lymph nodes examined
- **Pathologic Stage Classification** (pTNM, AJCC 8th Edition)
 - TNM Descriptors (multiple primary tumors, recurrent, posttreatment)
 - Primary Tumor (pT)
 - Regional Lymph Nodes (pN)
 - Distant Metastasis (pM) (required only if confirmed pathologically in this case)
- **Ancillary Studies** (K-Rras, EGFR, MSI)

Protocol for the Examination of Specimens from Patients with Primary Carcinoma of the Colon and Rectum (resection)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colectomy</td>
</tr>
<tr>
<td>Rectal Resection</td>
</tr>
<tr>
<td>Tumor Type</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

- Select a single response unless otherwise indicated.
- **Procedure**
 - Right hemicolecctomy
 - Transverse colectomy
 - Left hemicolecctomy
 - Sigmoidecctomy
 - Low anterior resection etc
- **Tumor Site** (select all that apply)
 - Cecum
 - Ileocecal valve
 - Right (ascending) colon
 - Hepatic flexure
 - Transverse colon
 - Splenic flexure
 - Left (descending) colon etc
- **Tumor Location** (applicable only to rectal primaries)
 - Entirely above the anterior peritoneal reflection
 - Entirely below the anterior peritoneal reflection
 - Straddles the anterior peritoneal reflection
 - Not specified
- **Tumor Size**
 - Three dimensions
- **Macroscopic Tumor Perforation**
 - Not identified
 - Present
 - Cannot be determined
- **Macroscopic Intactness of Mesorectum** (if applicable)
 - Complete
 - Near complete
 - Incomplete
 - Cannot be determined
- **Histologic Type**
 - Adenocarcinoma
 - Mucinous adenocarcinoma
 - Signet-ring cell carcinoma
 - Medullary carcinoma
- **Histologic Grade**
 - G1: Well differentiated
 - G2: Moderately differentiated
 - G3: Poorly differentiated
 - G4: Undifferentiated
- **Tumor Extension**
- **Margins**
 - All margins are uninvolved by invasive carcinoma, high-grade dysplasia, intramucosal adenocarcinoma, and adenoma
 - Margins examined: ___________
 + Distance of invasive carcinoma from closest margin (millimetres or centimetres): __ mm or ___ cm
 + Specify closest margin: ___________
 + Distance of tumor from radial margin (recommended for rectal tumors) (millimetres or centimetres): __ mm or ___ cm
Individual margin reporting required if any margins are involved or margin involvement cannot be assessed

- **Proximal Margin**
 - Cannot be assessed
 - Uninvolved by invasive carcinoma
 - Distance of tumor from margin
 - Involved by invasive carcinoma

- **Distal Margin**
 - Cannot be assessed
 - Uninvolved by invasive carcinoma
 - Distance of tumor from margin
 - Involved by invasive carcinoma

- **Radial or Mesenteric Margin**
 - Cannot be assessed
 - Uninvolved by invasive carcinoma
 - Distance of tumor from margin
 - Involved by invasive carcinoma

- **Deep Margin**
 - Cannot be assessed
 - Uninvolved by invasive carcinoma
 - + Distance of tumor from margin (millimetres or centimetres): ___ mm or ___ cm
 - Involved by invasive carcinoma

Treatment Effect

- __No known presurgical therapy__
- __Present (No viable cancer cells (complete response, score 0), Single cells or rare small groups of cancer cells, Residual cancer with evident tumor regression, but more than single cells or rare small groups of cancer cells, absent)__
- Lymph-vascular Invasion (select all that apply)
- Perineural Invasion
- Type of Polyp in Which Invasive Carcinoma Arose
 - None identified, Tubular adenoma, Villous adenoma, Tubulovillous adenoma etc
- Tumor Deposits
 - Not identified, Present (Specify number of deposits), Cannot be determined
- **Regional Lymph Nodes**
 - No lymph nodes submitted or found
 - Number of Lymph Nodes Involved: ____, Number of Lymph Nodes Examined: ____
 - Pathologic Stage Classification (pTNM, AJCC 8th Edition)
 - TNM Descriptors (required only if applicable) (select all that apply)
 - m (multiple primary tumors), r (recurrent), y (posttreatment)

Primary Tumor (pT)

- __pTX: Primary tumor cannot be assessed__
- __pT0: No evidence of primary tumor__
- __pT1: Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria)__
- __pT2: Tumor invades the muscularis propria__
- __pT3: Tumor invades through the muscularis propria into pericolorectal tissues__
- __pT4: Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure__

Regional Lymph Nodes (pN)

- __pNX: Regional lymph nodes cannot be assessed__
- __pN0: No regional lymph node metastasis__
- __pN1: One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative__
- __pN2: Four or more regional lymph nodes are positive__

Distant Metastasis (pM) (required only if confirmed pathologically in this case)

- __pM1: Metastasis to one or more distant sites or organs or peritoneal metastasis is identified__
 - __pM1a: Metastasis to one site or organ is identified without peritoneal metastasis__
 - __pM1b: Metastasis to two or more sites or organs is identified without peritoneal metastasis__
 - __pM1c: Metastasis to the peritoneal surface is identified alone or with other site or organ metastases__

Additional Pathologic Findings (select all that apply)

- None identified, Adenoma(s), Ulcerative colitis etc

Ancillary Studies

- Microsatellite Instability (MSI) Testing
 - MSI-high (>30%), MSI-low (10-30%), MSI-stable (0%)
Figure 1. A, Mesenteric margin in portion of colon completely encased by peritoneum (dotted line). B, Circumferential margin (dotted line) in portion of colon incompletely encased by peritoneum. C, Circumferential margin (dotted line) in rectum, completely unencased by peritoneum.

Figure 2. Total Mesorectum resection.

References
1. National Cancer Screening Guidelines – Kenya
2. AJCC Cancer Staging Atlas (2017)
Introduction

According to World Health Organization (WHO), a child is defined to be 19 years or younger. Globally, the annual incidence of cancer in children is estimated at 300,000 cases (GLOBOCAN, 2018). Genetic factors, environmental factors such as ionizing radiation, chemicals and infectious agents have also been linked to cancers causation. Common childhood neoplasms in Kenya are Leukemia, Lymphoma (Burkitt's, Hodgkin's and Non-Hodgkin's), Wilms tumour, Rhabdosarcoma and Retinoblastoma. The majority of childhood cancers are not amenable to screening, apart from retinoblastoma (RB) and other rarer heritable conditions. Unlike some adult cancers, childhood cancers are not associated with lifestyle. Emphasis in childhood cancers is early detection as there is high potential for cure. Improved minimum action recommended and attempts made to equip level of care for adequate clinical work up, sampling, specimen referral or and diagnostic work up.

High clinical suspicion required for early comprehensive work-up and review of unresponsive and poor response to treatment leading to referral to county referral and specialist health institutions.

Basic lab investigations such as Total Blood Counts, Peripheral Blood Film, Urea and Electrolytes, Creatinine, Liver Function Tests (enzymes and bilirubin), etc. predate specialist neoplasia diagnostic tests and supplement others as imaging studies.

Specimens and tests in childhood neoplasia suspicion and diagnosis

1. Peripheral blood
2. Peripheral blood film
3. Bone Marrow Aspirate
4. Bone Marrow Biopsy
5. Lymph node Aspirate
6. Lymph node Biopsy
7. Tissue Biopsy... Neck and Jaw masses, etc.
8. Tru-Cut or Kidney Core biopsy
10. Ocular/Globe specimen
Specimen Handling, processing and reporting

Lymph node
Useful in primary node, hematopoietic and metastatic disease; treated as small tissue specimen and information including biodata and clinical history is compulsory for accurate reporting. Relevance is per clinical presentation but following important: site, purpose of procedure, size, consistence, gross appearance if resection is done, features of cut sections, prior treatment, investigations and results, immunologic status, cell counts and PBF morphology, etc. Removal is by Medical officer, Pathologist, primary physician, etc. with minimum pressure (avoidance of crush artefacts) and immediate transverse section perpendicular to the long axis and air-dried impression smears taken on slides for Romansky stains before fixation. Other impression smears taken and alcohol fixed. Specimen to preservative volume about 1:10 in a wide mouth screw cap container. The lymph node should be sectioned. The fresh slides should be submitted for genetic studies while the specimen is fixed in 10% buffered saline for histology, histochemistry, immunohistochemistry stains, etc.

Bone Marrow Aspirate and Biopsy
This is done to evaluate hematologic disease or stage carcinomas and lymphomas. It Provides useful information often in addition to that of lymph node aspirate and biopsy and their reports if present is important. Aspirates handled by trained technologist, laboratory scientist, Medical officer and Pathologist. Smears are prepared immediately and part may be preserved in EDTA tube and pressed within 30min to one hour

The trephine Biopsy is immersed immediately in 10% neutral buffered formalin or other specified preservative. Impression, rolled smears should be made prior to fixation. Pre-embedding processing involves decalcification. Period in fixative and decalcifying fluid critical for sectioning histologic clarity. Stains in addition to H&E depend on clinical information and H&E findings but generally includes PAS, Perl's Prussian blue, reticulin and fungal stains.

Where possible, the sampler in BMA and BM Trephine should report. If not, to package for referral to more equipped center. Clinical notes (thoroughly filled requisition form required) should accompany specimen. Always fresh peripheral blood film and a counter count print out or sample should always accompanies BMA and BM histology specimen. The Specimen should be submitted for flow cytometry.

Tissue biopsy
Tissue biopsies from masses excised from children (e.g. jaw masses, neck swellings, abdominal or other head and neck masses are in principle handled, grossed, trimmed and processed in the same manner as specimens from adults.

Additional stains and immunohistochemistry are usually required for definitive diagnosis of childhood tumors. The particular immunostain will depend on the organ involved, site, and morphology on HE stains.

Trucut Kidney biopsy and Nephrectomy specimens
Trucut biopsies should be counted fixed and processed for histological examination in the usual manner as other biopsies

Nephrectomy specimens should be weighed, described, grossed, and sampled to include the capsule, cortex, cortico-medullary junction, renal pelvis and the renal vein, perirenal fat, and Gerota's fascia. If there is a gross tumor on sectioning, its color, texture, dimensions and location should be described as well as necrosis and gross involvement of the renal vein.

Identify describe and sample the adrenal glands if present.

All hilar tissue should sample for histology.

Ancillary testing in childhood cancer
Ancillary testing in childhood cancer is crucial in arriving at the accurate diagnosis, often because conventional histopathology and hematological procedures are inadequate to pinpoint the definitive cancer. This ancillary testing takes the form of flow cytometry and genetic testing.

The table below shows commonly used ancillary testing techniques for childhood cancer and their sample requirements.
Sample requirements for Flow Cytometry and Cytogenetics

NB Most laboratories will have additional information specific to their setup on the sample requirements. It is recommended to contact your referral laboratory prior to sample collection.

<table>
<thead>
<tr>
<th>Test</th>
<th>Sample types</th>
<th>Sample details</th>
</tr>
</thead>
</table>
| **Flowcytometry** | PERIPHERAL BLOOD, BONE MARROW, CSF, PLEURAL & ASCITIC FLUIDS, FNA, LYMPH NODES, BIOPSY | PERIPHERAL BLOOD: 2 x 5ml heparin (preferable) or 1 x 5ml EDTA (acceptable)
BONE MARROW: 2 x 5ml heparin (preferable) or 1 x 5ml EDTA (acceptable)
CSF: Plain tube without gel or any other anticoagulant acceptable
CSF: Plain tube without gel or any other anticoagulant
MUST REACH FLOW LAB WITHIN 6 HOURS OF COLLECTION
PLEURAL FLUID: Plain tube without gel or any other anticoagulant
ASCITIC FLUID: Plain tube without gel or any other anticoagulant
FNA: In RPMI transport medium - to keep cells viable
LYMPH NODE: In Buffered Saline
BIOPSY: In Buffered Saline
PLEASE NOTE: Any flow requests must send with copy of REQUEST FORM with as much clinical info as possible |
| **Cytogenetics** | Can be performed on BLOOD, CSF, BUCCAL, AMNIOTIIC FLUID, PLEURAL EFFUSION CHORIONIC VILLI, SKIN, NAILS, HAIR FIXED TISSUE SLIDES, (LYMPHNODE,TUMOUR BIOPSY) | EXAMPLE: BONE MARROW CYTOGENETICS
BONE MARROW ASPIRATE (HEPARIN) AND/OR UNSTAINED SLIDE.
Sample must not be older than 2 days.
CD 16/19
2xEDTA
FISH TEST (Bone Marrow)
MYELOMA TRANSLOCATION PROFILE
SAMPLE: 2 X Edta
PCR 1 (9:22) QUANTIFICATION
SAMPLE: 2 X EDTA
or 2 x PAX gene TUBES
PHILADELPHIA CHROMOSOME.
SAMPLE: 1 X HEPARIN
RED CELL MEMBRANE PROTEIN ANALYSIS
SAMPLE: ONE or TWO ACD TUBES - ON ICE (NOT FROZEN)
T CELL RECEPTOR GENE RE ARRANGEMENT
SAMPLE: 1 x EDTA |
CYTO/HISTOPATHOLOGY REPORT FORM

LAB NUMBER

<table>
<thead>
<tr>
<th>Health facility Name</th>
<th>Sub county</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year:</th>
<th>Month</th>
</tr>
</thead>
</table>

A PATIENT:

<table>
<thead>
<tr>
<th>FIRST NAME</th>
<th>MIDDLE NAME</th>
<th>SURNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Identification No</th>
<th>3. Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1=Single 2=Married 3=Widowed 4=Separated 5=Cohabiting 6=Divorced 7=Child 9=Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TEL NO (Patient)</th>
<th>5. TEL. NO (Nok)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Age</th>
<th>7. Date of Birth</th>
<th>8. Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D M Y Y Y Y</td>
<td>(1=Male 2=Female 9=Unknown)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Place of Residence</th>
<th>A. COUNTY</th>
<th>B. SUBCOUNTY</th>
<th>C. VILLAGE/ESTATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Place of Birth</th>
<th>11. Tribe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Religion</th>
<th>1=Christian 2=Muslim 3=Hindu 4=Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Education Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Smoking Status</th>
<th>1=Never 2=Smokes 3=Ex-Smoker 9=Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Drinking Status</th>
<th>1=Never 2=Alcoholic 3=Ex-Alcoholic 9=Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B TUMOUR

<table>
<thead>
<tr>
<th>17. Incidence date</th>
<th>18. Basis of Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.- Clinical Only</td>
</tr>
<tr>
<td></td>
<td>2.- Clinic. Invest/radio-image</td>
</tr>
<tr>
<td></td>
<td>4.- Biochem. Immuno test</td>
</tr>
<tr>
<td></td>
<td>5.- Cytology/Haematology</td>
</tr>
<tr>
<td></td>
<td>6.-Histology of metastasis</td>
</tr>
<tr>
<td></td>
<td>7.-Histology of primary</td>
</tr>
<tr>
<td></td>
<td>9.-Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Primary Site</th>
<th>specimen type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. (A) Histology</th>
<th>21. (B) CYTOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morphology code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Pertinent Clinical Information

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Ministry of Health
SPECIMEN COLLECTION CONSENT FORM

Patients are only expected to consent to the procedure if they understand:

• Why the procedure is needed.

• The type of an aesthetic used (checking for any allergies).

• Wound aspects - patients should be made aware that there is a small chance that the wound might get infected and that this may require further treatment.

• The final cosmetic result cannot be guaranteed as every patient has a completely different healing process as far as final scar appearance is concerned.

• Patients are expected to follow instructions given to care for the wound and avoid the unwanted early openings which will result in unwanted cosmetic result and wound infection.

• Patients are expected to understand they can opt out before the procedure is performed.

• Time for removal of the sutures/stitches (if applicable)

Patient Name: ___________________________ Date of Birth: ___________________________ Sex: ___________________________

Address: ___________________________ Phone: ___________________________

PROCEDURE: ___________________________

Complications may include (but are not limited to):

1. Bleeding
2. Infection
3. Delayed healing
4. Scarring
5. Pain

I, ___________________________, consent to the minor surgical procedure as described to me by my Doctor.

I have read and understood the information above and fully understand the reasons for my procedure.

Patients Signature: ___________________________ Date: ____________

Clinician Name (print): ___________________________ signature: ___________________________
MINISTRY OF HEALTH

Cyto/Histopathology specimen referral form

<table>
<thead>
<tr>
<th>Address</th>
<th>Patient name (Last, First, MI)</th>
<th>Date of birth</th>
<th>Sex</th>
<th>National identification number</th>
<th>OP/IP number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient phone number</td>
<td>Marital status</td>
<td>Next of kin name (Last, First, MI)</td>
<td>Next of kin phone number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>County of residence</td>
<td>Smoking status</td>
<td>Drinking status</td>
<td>Education Level</td>
<td>Occupation</td>
</tr>
<tr>
<td></td>
<td>Date and time received</td>
<td>MODE OF TRANSPORT</td>
<td>NAME AND CONTACT OF SHIPPING PERSONNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHIPMENT TEMPERATURE</td>
<td>2-80c Room temp.</td>
<td>NAME AND CONTACT OF DISPATCHING PERSONNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECEIVING REFERENCE LABORATORY</td>
<td></td>
<td>NAME OF SHIPPING INSTITUTION AND STAMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date and time received</td>
<td>Condition upon reception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Reasons for Rejection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where there are inadequate patient, specimen identification and quality the dispatching personnel will be informed and requested to identify the case and provide the necessary details. If the dispatching personnel cannot be contacted, the referral form and specimen will be returned to the sender with a “discrepancy” notice. The dispatching personnel must complete and sign the referral form and must return the corrected form/specimen to the referral facility.
List of Contributors

<table>
<thead>
<tr>
<th>Contributor</th>
<th>Institution/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ancent Kituku</td>
<td>Machakos County Government</td>
</tr>
<tr>
<td>Dr. Anderson Mutwiri</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Dr. Abdalla Abdulkarim</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Hannah Gitungo</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Ben Kitole</td>
<td>Kilifi County Government</td>
</tr>
<tr>
<td>Dr. Catherine Murithi</td>
<td>Roche</td>
</tr>
<tr>
<td>Dr. Eric Hungu</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Dr. Eunice Gathitu</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Francis Ndiangui</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Francis Tawuo</td>
<td>National Public Health Laboratories Service</td>
</tr>
<tr>
<td>Dr. Gakinya Mukono</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Mr. Joel Atuti</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Mr. Peter Kariuki</td>
<td>Kenya Medical Training College</td>
</tr>
<tr>
<td>Dr. Kibor Kibet</td>
<td>Moi Teaching and Referral Hospital</td>
</tr>
<tr>
<td>Lawrence Mutie</td>
<td>Machakos County Government</td>
</tr>
<tr>
<td>Lydia Kirika</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Mary Nyangasi</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Njau Mungai</td>
<td>National Public Health Laboratories Service</td>
</tr>
<tr>
<td>Dr. Peter Asaava</td>
<td>Maseno University</td>
</tr>
<tr>
<td>Dr. Shahin Sayed</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Dr. Valerian Mwenda</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Richard Njoroge</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Joan Bor Malenya</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Dr. Wairimu Waweru</td>
<td>Department of Pathology, University of Nairobi</td>
</tr>
<tr>
<td>Dr. Waqo Ejersa</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Prof. Angela Amayo</td>
<td>Department of Pathology, University of Nairobi</td>
</tr>
<tr>
<td>Dr. Jamilla Rajab</td>
<td>Department of Pathology, University of Nairobi</td>
</tr>
<tr>
<td>Martin Mbaya</td>
<td>Roche</td>
</tr>
<tr>
<td>Agnes Betty Nthusa</td>
<td>Clinton Health Access Initiative</td>
</tr>
<tr>
<td>Dr. Miriam Mutebi</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Dr. Beatrice Nyawira</td>
<td>Roche</td>
</tr>
<tr>
<td>Dr. John Mathaiya</td>
<td>Kiambu County Government</td>
</tr>
<tr>
<td>Dr. John Muthuuri</td>
<td>Nyeri County Government</td>
</tr>
<tr>
<td>Dr. Titus Ngulungu</td>
<td>Nakuru County Government</td>
</tr>
<tr>
<td>Dr. Grace Midigo</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Margaret Wangui</td>
<td>Nakuru County Government</td>
</tr>
<tr>
<td>MacDonald Hillary Chang</td>
<td>National Cancer Control Program</td>
</tr>
<tr>
<td>Louis Azubuike</td>
<td>Roche</td>
</tr>
<tr>
<td>Dr. Ann Ng’ang’a</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Dr. Joseph Kibachio</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Dr. Mary Mungania</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Dr. Siwillis Mithe</td>
<td>Murang’a County,</td>
</tr>
<tr>
<td>Mercy Mugo</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Irene Kanyi</td>
<td>National Public Health Laboratory services</td>
</tr>
</tbody>
</table>

Reviewer:
Dr. Zahir Moloo - Associate Professor of Pathology, AKUH