Guidelines on Case Management of COVID-19 in Kenya

2021 Edition
Foreword

It has been over a year since Kenya identified the first case of COVID-19 in the country. The Government formed the National COVID-19 task force, which supported the country's response through multi-sectoral technical working groups on testing, case management, risk communication and community engagement among others. An earlier version of the COVID case management guideline was released in April 2020 and capacity building of health care workers on diagnosis and treatment of COVID-19 was quickly carried out, even as counties prepared themselves by setting up isolation centres and supplies.

As at 18th of July, 2021, we have confirmed 192 758 people to have COVID-19, with 3775 deaths reported. Through all this, our health care workers are now armed with more knowledge on COVID-19, they have learnt who is at risk for severe COVID-19, they have learnt what treatment works and, in some cases, what does not work. We know which public health measures we need to focus on in order to combat the pandemic, and also have a few more shields in our armament, such as the COVID-19 vaccines.

These consolidated guidelines for the prevention, control and management COVID-19 in Kenya provide updated recommendations for comprehensive prevention and case management strategies in Kenya. They cover infection prevention and control measures including the use of vaccines. They also target the diagnosis and case management of COVID-19. These guidelines come at a critical time, especially since we continue to see several waves of the pandemic, to build the capacity of health care workers to handle patients with COVID-19 from their diagnosis, treatment and management.

This has been a collaborative effort bringing together health workers from all sectors-our universities, private and government facilities managing COVID-19 clients to determine and institute the best practices in their management.

We look forward to health workers using these guidelines to improve the quality of care given to all Kenyans, as we strive towards a healthy and productive nation.

Dr. Patrick Amoth, EBS
Ag. Director General for Health
Ministry of Health.
Acknowledgement

The Guidelines on Case Management of COVID-19 in Kenya 2021, have been developed through the contribution of many individuals and institutions that are committed to improving the outcome of persons infected with COVID-19, and reducing the risk associated with inappropriate therapies.

The Kenyan Ministry of Health wishes to thank all the contributing authors, led by the case management subcommittee of the National COVID-19 task force, for their expertise and time given to the wiring of these guidelines.

I take this opportunity to appreciate the efforts the following team of experts, led by Dr. Loice Achieng Ombajo, who wrote this guideline: Dr. Marybeth Maritim, Dr. Felix Riunga, Dr. Reuben Okioma, Dr. Anne Mugera, Dr. Fred Wangai, Dr. Christabel Khaemba, Dr. Duncan Nyukuri, Dr. Phoebe Juma, Dr. Agatha Olago, Dr. Andrew Owuor, Margaret Ogonga and Dr. Rosemary Wanjeru. I thank Collins Etemesi for working on the design and layout of the document. I also appreciate the efforts of the team that reviewed and contributed to the finalisation of this document as indicated in the list of contributors.

I acknowledge the tremendous support provided by the University of Nairobi and the World Health Organisation towards the finalisation of this guideline.

Brig. (Dr.) Francis Kuria,
Ag. Head, Directorate of Public Health
Ministry of Health.
Table of Contents

Foreword.. i
Acknowledgement ... ii
Table of Contents ... iii
List of Figures ... iv
List of Tables .. iv
List of Abbreviations ... v
Chapter 1: Introduction to COVID-19 ... 1
 Case definition: ... 3

Chapter 2: Infection Prevention and Control (IPC) plan in response to COVID-19 5
 Key IPC measures when handling suspected or confirmed COVID-19 cases.. 8
 Screening and triage: ... 8
 Applying standard precautions for all patients ... 8
 Applying transmission-based precautions ... 8
 Cleaning and disinfection ... 9
 Infectious Period ... 9
 Handling of bodies of suspected or confirmed covid patients ... 10

Chapter 3: Diagnosis of COVID-19 .. 13
 Preferred Initial Tests ... 13
 Specimens for testing ... 14
 Collection of specimens for laboratory diagnosis ... 14

Chapter 4: Management of COVID-19 .. 16
 Baseline Tests ... 20
 Other Therapeutic Agents ... 20
 Oxygen therapy: ... 24
 Proning for non-intubated patients ... 25
 Contraindications .. 25
 Procedure ... 25
 Decision making for ventilatory support for critically ill patients ... 26
 COVID-19 Airway Management .. 26
 Extubation practices ... 37
 Management of special populations: ... 40
 Children ... 40
 Pregnant women ... 40
 Lactating women ... 40

GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

Recognizing and managing co-morbidities in patients with COVID 19 .. 41
Considerations for individuals with diabetes mellitus .. 41

Chapter 5: Guidance for ending isolation for COVID-19 patients
Background ... 45
Viral shedding ... 45
Recommendation for Discharge and ending Isolation for COVID-19 patients .. 45
Care of COVID-19 patients after acute illness ... 46
Management of post-COVID-19 symptoms ... 47
COVID-19 and Vaccination .. 48
COVID-19 Vaccination after SARS COV-2 Infection .. 48
COVID-19 Vaccine Safety .. 48
SARS-COV-2 Infection After Vaccination .. 48

References ... 49

Annex .. 51
List of related guidelines .. 51
List of Contributors .. 53

List of Figures

Figure 1: Facility Patient flow .. 7
Figure 2: Pre donning instructions .. 11
Figure 3: Order of removal of PPE ... 12
Figure 4: Antigen Testing Algorithm .. 13
Figure 5: Triage and management of a patient presenting with symptoms of Covid 19 15
Figure 6a: Management Algorithm for the adult patient with COVID-19 .. 22
Figure 6b: Management of Pediatric COVID-19 Patients .. 23
Figure 7: Methods of oxygen delivery ... 24
Figure 8: Decision making for ventilatory support .. 26
Figure 9: Emergency tracheal intubation checklist COVID-19 .. 28
Figure 10: Haemodynamic support .. 38
Figure 11: Diabetic ketoacidosis treatment chart (adults) .. 44
List of Tables

Table 1: PPE to Be Provided to Staff According to Risk Categories ... 7
Table 2a: COVID-19 severity categorization in adults and adolescents .. 16
Table 2b: COVID-19 severity categorization in children .. 16
Table 3: Management of asymptomatic, mild and moderate COVID-19 .. 18
Table 4: Management of severe and critical COVID-19 ... 19
Table 5: Other Therapeutic Agents ... 20
Table 6: Proning schedule ... 25
Table 7: COVID-19 Airway Management .. 26
Table 8: Sedation and analgesia protocol ... 34
Table 9: Measures to prevent complications ... 39
Table 10: Diagnostic criteria and severity of DKA/ HHS ... 42
Table 11: Criteria for ending Isolation .. 46
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEFI</td>
<td>Adverse Events Following Vaccination</td>
</tr>
<tr>
<td>ARI</td>
<td>Acute Respiratory Infection</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>APRV</td>
<td>Airway Pressure Release Ventilation</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>Bpm</td>
<td>Beats/minute</td>
</tr>
<tr>
<td>BVM</td>
<td>Bag Valve Mask</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Services</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>COVID-19</td>
<td>Coronavirus Disease 2019</td>
</tr>
<tr>
<td>FiO2</td>
<td>Fraction of inspired oxygen</td>
</tr>
<tr>
<td>IPC</td>
<td>Infection Prevention and Control</td>
</tr>
<tr>
<td>LRT</td>
<td>Lower Respiratory Tract</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean Arterial Pressure</td>
</tr>
<tr>
<td>NIV</td>
<td>Non-invasive Ventilation</td>
</tr>
<tr>
<td>OI</td>
<td>Oxygenation Index</td>
</tr>
<tr>
<td>OSI</td>
<td>Oxygenation Index using SpO2</td>
</tr>
<tr>
<td>PaO2</td>
<td>Partial Pressure of Oxygen</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive End-Expiratory Pressure</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>RRT</td>
<td>Rapid Response Team</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcriptase – Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
</tr>
<tr>
<td>SARI</td>
<td>Severe Acute Respiratory Illness</td>
</tr>
<tr>
<td>SARS-COV-2</td>
<td>Severe Acute Respiratory Syndrome – Coronavirus -2</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SIRS</td>
<td>Systemic Inflammatory Response Syndrome</td>
</tr>
<tr>
<td>SpO2</td>
<td>Oxygen Saturation</td>
</tr>
<tr>
<td>URT</td>
<td>Upper Respiratory Tract</td>
</tr>
<tr>
<td>ROX</td>
<td>Respiratory Oxygenation Index</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction to COVID-19

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (1). SARS-CoV-2 belongs to the Sarbecovirus subgenus of the Coronaviridae family, and is the seventh coronavirus known to infect humans. Coronaviruses are a large family of enveloped RNA viruses, some of which cause illness in people (e.g., common cold, SARS, MERS), and others that circulate among mammals (e.g., bats, camels) and birds (2). Rarely, animal coronaviruses can spread to humans and subsequently spread between humans. Similar to SARS and MERS, it is thought that human transmission occurs via respiratory droplets produced when a person sneezes or coughs and, aerosol in certain circumstances including airway manipulation. The situations where aerosol generation occurs include coughing, nebulization, tracheal intubation and airway suctioning (1).

WHO first declared COVID-19 to be a public health emergency of international concern on 30 January 2020 and subsequently declared it a pandemic on 11th March, 2020. The pace at which COVID-19 spread throughout the world and in Kenya was hitherto unprecedented. Kenya discovered the first documented case of COVID-19 within its borders on 13th March, 2021 and as at 18th July 2021, the total number of confirmed cases was reported as 192,758, with 3775 deaths since the beginning of the outbreak (3). COVID-19 is highly transmissible and infectious, and runs the risk of overwhelming the capacity of the health system, with the need to support not just those with COVID-19, but also those with other illnesses. A lot of efforts have gone into reducing transmission of the virus, including restrictions on gatherings, contact-tracing, quarantine and isolation. With the spread of COVID-19 in the communities, the importance of preventive public health measures such as hand-washing and proper use of face-masks cannot be overemphasised. The introduction of the COVID-19 vaccines with a focus on groups at high risk such as health-workers and persons aged above 58 years and those who have comorbidities such as Diabetes Mellitus and Hypertension has added another prong to prevention measures against COVID-19.

The most common symptoms of COVID-19 include cough, loss of smell and/or taste, fever, difficulty in breathing, headache, sore throat, running nose, chest pain, myalgia, fatigue, general weakness and diarrhoea. The most common clinical presentation is that of a respiratory infection with a symptom severity ranging from a mild common cold-like illness (estimated to be 80% of cases), to a severe viral pneumonia in approximately 14%, leading to acute respiratory distress syndrome that is potentially fatal in about 5%. Current estimates of the incubation period range from 1 to 14 days, with a median incubation period of five to six days (4). Transmission can occur during the incubation period, even in the absence of symptoms.

Certain groups of people are at higher risk for transmission and severe disease including healthcare workers who work with COVID-19 patients. Vulnerable and marginalized groups such as people with disabilities may face challenges in accessing healthcare and have worse outcomes from COVID-19. People of any age can catch COVID-19, but it most commonly affects middle-aged and older adults. The risk of developing severe COVID-19 disease increases with age from age 58. More than 80% of COVID-19 deaths occur in people over age 65, and more than 95% of COVID-19 deaths occur in people older than 45(5). Some conditions can result in higher severity of disease in adults of any age;

- Diabetes Mellitus (Type 1 or 2)
- Heart conditions (such as heart failure, coronary artery disease, cardiomyopathies or hypertension)
Clinical manifestations of COVID-19 are generally milder in children compared with adults. Symptomatic children may present with non-respiratory symptoms such as gastroenteritis more frequently than adults. An acute hyperinflammatory syndrome leading to shock or multi-organ failure has been described, known as the Multisystem Inflammatory Syndrome (MIS-C) which is temporally associated with COVID-19 in children and adolescents.

A notable challenge in the war against the pandemic appears to be the rate at which mutations occur, resulting in several variants of concern such as the Delta Variant B.1.617.2, that have been noted to be more transmissible and evade the immune system, resulting in more infections and increased severity of the disease. This brings out the importance of strengthening public health measures and vaccination strategies early in the response.

This document offers guidance on the following areas of COVID-19 management: case definition, infection prevention and control, diagnosis, stratification of patients according to severity of illness, management of asymptomatic, mild, severe and critical illness, management of co-morbidities such as diabetes in the context of COVID-19, discharge and de-isolation, management of post-acute covid illness and issues related to COVID-19 vaccination.

This is a living document and will be updated from time-to-time as more data and evidence becomes available.
Case definition:

Suspected case of SARS-CoV-2 infection:

1. **A person who meets the clinical AND epidemiological criteria:**

 Clinical criteria:
 - Acute onset cough AND fever; OR
 - Acute onset of ANY TWO OR MORE of the following signs or symptoms:
 - Cough, fever, loss of taste or smell, difficulty breathing, sore throat, running nose, chest pain, fatigue/general weakness, headache, diarrhoea, altered mental status (Children may present with atypical symptoms)
 - AND

 Epidemiologic criteria:
 - Residing, working or travel (within the last 14 days) to an area with high risk of transmission of virus (In Kenya, this will be as reported by the Ministry of Health)
 - Where there is widespread community transmission in several regions of the country, then all patients will be considered to have met epidemiologic criteria
 - Working in a healthcare facility
 - International travel in the last 14 days

2. **A patient with severe acute respiratory illness (SARI)**
 - (SARI: Acute respiratory infection with or without fever; and cough; with onset within the last 10 days; and requires hospitalization)

Probable case of SARS-CoV-2 infection

- A patient who meets clinical criteria above AND is a contact of a probable or confirmed case, or linked to a COVID-19 cluster
- A suspected case with chest imaging showing findings suggestive of COVID-19 disease
- Recent onset loss of taste or loss of smell with no other identified cause
 - (Common imaging findings include bilateral peripheral opacities with lower lung distribution. Opacities usually ground glass opacities that may progress to consolidations)
- Unexplained death in an adult with SARI prior to death AND had contact with a probable or confirmed case or linked to a COVID-19 cluster

Confirmed case of SARS-CoV-2 infection

- A person with a positive SARS-CoV-2 PCR test
- A person with a positive SARS-CoV-2 Antigen RDT AND meeting criteria for either suspected or probable case; OR has contact with a probable or confirmed case.
Multisystem Inflammatory Syndrome in Children (MIS-C)

- Preliminary case definition: Children and adolescents 0–19 years of age with fever > 3 days
 AND
- Two of the following: rash or bilateral non-purulent conjunctivitis or muco-cutaneous inflammation
 signs (oral, hands or feet); hypotension or shock; features of myocardial dysfunction, pericarditis,
 valvulitis, or coronary abnormalities; evidence of Coagulopathy, acute gastrointestinal problems;
 AND
- No other obvious microbial cause of inflammation
 AND
- Evidence of COVID-19 (RT-PCR, antigen test or serology positive), or likely contact with patients
 with COVID-19.
Chapter 2: Infection Prevention and Control (IPC) plan in response to COVID-19

Introduction
- The main aim for IPC is to prevent or limit the spread of SARS-COV 2 at all levels of healthcare

Facility preparedness
- All facilities should have:
 - An IPC program or a dedicated IPC focal person
 - A functional screening and triage area for early case identification
 - A holding area for cases awaiting results or transfer
 - A mechanism to ensure standard and transmission-based precautions.
 - Adequate healthcare workers to provide 24-hour patient care without exhaustion.
 - A plan to conduct health worker exposure risk assessment
 - Continuous training and refresher courses to the existing staff and any new staff.
 - Adequate IPC supplies and equipment

1. Quarantine and Isolation

Quarantine
Quarantine is separation and restricted movement of well persons who have been exposed to persons with COVID-19. It can be applied at the individual, family or community level. All persons who have had contact with a confirmed case of COVID 19 should quarantine for 14 days and get a COVID 19 test if they develop any symptoms. Quarantine can either be self-quarantine or carried out at a designated facility.

Instructions for self-quarantine include:
- Limit the number of visitors
- Continue to observe respiratory hygiene and cough etiquette
- Observe hand hygiene by either use of soap and water or an alcohol-based hand rub
- Ensure proper ventilation of the facility or home
- Observe for fever or other symptoms daily.
- Watch for danger signs or signs of deterioration like dyspnoea and report to a health facility
- Use of either separate utensils or disposable utensils

Isolation
Isolation is the separation of sick people with a contagious disease from people who are not sick. All confirmed COVID-19 cases identified should be isolated. The location of isolation can be in a health facility for those with severe illness, at home for those who meet the self-isolation criteria or at a community isolation facility. Isolation precautions may be dropped 10 days after onset of symptoms, provided that one has had no fever without antipyretics for at least 24 hours.
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

Requirements for an isolation center

- The isolation facility should be set up relatively away from the main hospital facility or can be a designated isolation space set up with an exclusive passage at the entrance and exit to assist in proper flow of patients and staff.
- Should have provision for hand hygiene and waste management
- The designated area should have the three zones which can be colour coded green, red and the decontamination area. Zoning helps with cohorting of patients. The Green zone is the clean area where staff and persons who are presumed to not be infected can access. The red zone is the contaminated area such as the isolation ward for COVID-19 positive cases.
- Any COVID-19 service area, either outpatient, inpatient or clinic should have the 3 zones

GREEN ZONE areas (clean area)

1. Nurses and doctors’ rooms and stations.
2. Medication preparation room
3. Tea room
4. Patients’ pantry room
5. Non health workers offices

The area should accommodate minimal staff at any specific time to prevent infections

RED ZONE areas (Patient’s area) - contaminated

1. Triage, Examination rooms and filter clinics where patients will be cohorting in groups according to signs and symptoms
2. Patients wards and isolation room, if possible, with negative pressure or well-ventilated rooms with beds spaced 1-2 meters apart
3. Laboratory or laboratory specimen holding area, if possible, with a refrigerator
4. Theatre, Critical care Unit, and delivery room

DECONTAMINATION ZONE areas (contaminated area)

1. Body holding area with a gate leading to the farewell home where bodies will be packed ready for collection to the farewell home
2. Equipment cleaning area where equipment will be cleaned and decontaminated before being taken for sterilization
3. Linen decontamination area
4. Boots and staff cleaning room
5. Waste management area
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

![Isolation unit layout](image)

Figure 1: Facility Patient flow

<table>
<thead>
<tr>
<th>PROTECTION LEVEL</th>
<th>PROTECTIVE EQUIPMENT</th>
<th>SCOPE OF APPLICATION</th>
</tr>
</thead>
</table>
| **LEVEL 1 PROTECTION** | ● Disposable surgical mask
● Facility uniform
● Gloves | ● Triage
● Outpatients’ clinic
● Private clinics |
| **LEVEL 2 PROTECTION** | ● Facility uniform
● N95 mask
● Caps
● Waterproof Surgical gowns
● Gloves
● Eye protection e.g., face shield or goggles
● Plastic apron | ● Covid 19 clinics
● Isolation wards and CCU
● Radiology Unit for confirmed covid 19 patients
● Decontamination and cleaning unit (public health)
● Laboratory
● Farewell home |
| **LEVEL 3 PROTECTION** | ● Disposable scrubs
● N95 mask
● Waterproof surgical gown
● Plastic apron
● Face shield or goggle if available
● Caps
● Gloves | ● During suctioning
● Intubation
● Bronchoscopy
● Surgery
● Endoscopy or colonoscopy |

Table 1: PPE to Be Provided to Staff According to Risk Categories
Key IPC measures when handling suspected or confirmed COVID-19 cases

Screening and triage:

- Give the patient with suspected COVID-19 a medical mask and direct the patient to a separate area or an isolation room if available.
- Keep at least 1 meter distance between patients with suspected COVID-19 and other patients.
- Ensure areas are well ventilated with good airflow
- Instruct all patients to cover nose and mouth with tissue or flexed elbow during coughing or sneezing
- Perform hand hygiene after contact with patient or patient environment
- Use posters signage, audios and television clips advising all patients and relatives on signs and symptoms of COVID-19 and IPC measures
- Parents/caregivers need to support their children in maintaining cough hygiene by ensuring the child wears the mask or if the child becomes irritable and unable to tolerate the mask, the parent/caregiver should ensure they provide tissue for the child to cough into.
- Parents should ensure they guide hand washing for young children using soap and water.
- Ensure rational use of PPE in order to avoid wastage.

Applying standard precautions for all patients

These include

- Hand hygiene before and after contact with patients and patient environment
- Waste management
- Respiratory hygiene
- Rational use of PPE
- Physical distancing
- Environmental cleaning

Applying transmission-based precautions

Apply contact and droplet precautions:

Droplet precautions prevent large droplet transmission of respiratory viruses

- Perform hand hygiene after touching each patient or patient environment
- Use a medical mask if working within 1-2 metres from the patient
- Rational use of PPE for contact and droplet precaution (Gloves, medical masks, gown and Apron)
- Place patients in single rooms, or group together those with the same etiological diagnosis
- If an etiological diagnosis is not possible, cohort patients with similar clinical diagnosis and epidemiological risk factors, with a spatial separation
- When providing care in close contact with a patient with respiratory symptoms (e.g., coughing or sneezing), use eye protection (face-mask or goggles)
- Limit patient movement within the institution and ensure that patients wear medical masks when outside their rooms and that patients’ clean hands frequently either by washing with soap and water or use an alcohol hand rub
● Ensure that health care workers refrain from touching their eyes, nose, and mouth with potentially contaminated gloves or ungloved hands
● Avoid contaminating environmental surfaces that are not directly related to patient care (e.g., door handles and light switches)
● Ensure vehicles and ambulances for transporting patients are cleaned and disinfected regularly.

Apply airborne precautions when performing an aerosol generating procedure

● Ensure that healthcare workers obtaining nasopharyngeal swabs, performing dental procedures and performing aerosol-generating procedures (i.e., open suctioning of respiratory tract, intubation, bronchoscopy, cardiopulmonary resuscitation) use PPE, including gloves, long-sleeved gowns, eye protection, and fit-tested particulate respirators (N95 or equivalent, or higher level of protection)
● When possible, use adequately ventilated single rooms when performing aerosol-generating procedures. This could be either, meaning negative pressure rooms or well-ventilated single rooms
● Minimize the number of individuals present during the aerosol-generating procedure by avoiding the presence of unnecessary individuals in the room
● Care for the patient in the same type of room after mechanical ventilation commences

Cleaning and disinfection

● All surfaces in health facilities, especially frequently touched surfaces and those visibly soiled or contaminated by body fluids, should be routinely cleaned and disinfected.
● Use soap and water or enzymatic detergent for cleaning
● 0.5 % chlorine solution is recommended for routine disinfection.
● Patients’ linen should be laundered in the decontamination zone and disinfected with 0.05 % chlorine solution
● Tubing and surgical equipment should be cleaned and disinfected following recommended guidelines
● On discharge, the patient’s belongings should also be decontaminated and patient asked to take a shower prior leaving the isolation facility

Infectious Period

Persons with COVID-19 should be considered potentially infectious from two days before to 10 days following illness onset. Persons who continue to be ill longer than 7 days after illness onset should be considered potentially contagious up to 20 days. Children, especially younger children, might potentially be contagious for longer periods.

Non-hospitalised ill persons who are a confirmed or suspected case of COVID-19 are recommended to stay at home (home isolation) for at least the first 10 days after checking with their health care provider about any special care they might need if they are pregnant or have a health condition such as diabetes, heart disease, asthma, or other chronic lung disease.
Handling of bodies of suspected or confirmed covid patients

Preparing and packing the body for transfer from a patient room in a health facility to an autopsy unit, mortuary, crematorium, or burial site

- Ensure that personnel who interact with the body (health-care or mortuary staff, or the team preparing the body for burial or cremation) apply infection prevention and control (IPC) standard and transmission-based precautions after performing a risk assessment.
- Prepare the body for transfer including removal of all catheters and other indwelling devices.
- If an autopsy is to be performed, follow local guidance on the procedures for preparation of the body.

Autopsy

- If necessary, use level 3 PPE for conducting autopsies

Burial or cremation

- Follow national and local regulations during burials and cremations
- Family and friends may view the body after it has been prepared for burials
- Those tasked with placing the body in the grave should observe contact precautions
- If a body will be buried or cremated without a casket or body bag, use surgical or waterproof rubber gloves to place the body in the grave and perform hand hygiene afterwards.
- The number of individuals conducting the burial or cremation should be kept at a minimum.

Donning and Doffing Steps (refer to figure 2 and 3)

Donning: putting on the personal protective equipment.

Doffing: Taking off the personal protective equipment.

- Each facility should prepare a room for donning which should be on the green zone and the doffing should be in the decontamination area, each of the rooms should have instructions on the steps and a full-length mirror to use during the steps.
- The donning area should be at the entry of the GREEN zone and the doffing at the DECONTAMINATION zone
- At the donning area there should be a log book indicating the entry time and body temperature and the doffing should have an exit book this is to approximate the time spent in the Covid treatment unit.
- A bathroom should be available at the doffing area

Rehydration is encouraged after exit to replace lost fluids after the ward procedures
Figure 2: Pre donning instructions
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

Figure 3: Order of removal of PPE

1. Gloves – the outsides of the gloves are contaminated
2. Gown – the front of the gown and sleeves will be contaminated
3. Eye protection - the outside will be contaminated
4. Respirator – Clean hands with alcohol hand rub. Do not touch the front of the respirator as it will be contaminated
5. Wash hands with soap and water

Clean hands with alcohol gel
Chapter 3: Diagnosis of COVID-19

This chapter aims to provide guidance on who to test for COVID-19 and the preferred tests to use in the clinical setting. Testing is only recommended for diagnosis and not as an indicator of recovery from COVID-19. Testing should be offered to all persons meeting the case definition (refer to case definition on page 3).

Preferred Initial Tests

Nucleic Acid Amplification Tests (NAATs) such as the SARS-CoV-2 Polymerous Chain Reaction (PCR) are the preferred initial tests. Where access to a PCR test is limited or too costly then SARS-CoV-2 antigen testing can be utilized. Turn-around times for antigen tests are generally shorter than for PCR testing and thus an antigen test can help with quick identification of COVID-19 cases. Sensitivity of antigen tests is lower than that of NAATs. Therefore, a negative test may warrant confirmation by a PCR test in symptomatic patients. A positive antigen test does not warrant confirmation unless the patient is asymptomatic and the diagnosis is in doubt.

Serological tests i.e., SARS-COV-2 antibody detection tests should not be used for diagnosis of COVID-19. They can only be used to check for previous infection for example in the setting of serological surveys. Indeterminate PCR test results usually indicate that only one of the 2 or more target genes being tested for was identified. These tests should be considered presumptively positive.

![Figure 4: Antigen Testing Algorithm.](image-url)
Specimens for testing
Specimens can be taken from the upper respiratory tract or the lower respiratory tract. Upper respiratory tract samples include nasopharyngeal swabs, oropharyngeal swabs and nasopharyngeal aspirates. Lower respiratory tract specimens include bronchoalveolar lavage specimens and expectorated sputum.

Collection of specimens for laboratory diagnosis

- Collect specimens from the upper respiratory tract (URT; nasopharyngeal and oropharyngeal) AND, where clinical suspicion remains and URT specimens are negative, collect specimens from the lower respiratory tract when readily available (LRT; expectorated sputum, endotracheal aspirate, or bronchoalveolar lavage in ventilated patient) for SARS-CoV-2 testing by RT-PCR and bacterial stains/cultures.

NB:

- Use appropriate PPE for specimen collection (droplet and contact precautions for URT specimens; airborne precautions for LRT specimens). When collecting URT samples, use viral swabs (sterile Dacron or rayon, not cotton) and viral transport media. Do not sample the nostrils or tonsils. In a patient with suspected SARS-CoV-2, especially with pneumonia or severe illness, a single negative URT sample does not exclude the diagnosis, and additional URT and LRT samples are recommended. LRT samples are more likely to be positive and for a longer period. Clinicians may elect to collect only LRT samples when these are readily available (for example, in mechanically ventilated patients). Sputum induction should be avoided due to increased risk of increasing aerosol transmission.
- Samples should be collected in a timely manner for clinical management and outbreak control. Ensure that staff responsible for collection of samples are well trained and available. Samples should be transported to the laboratory using Viral Transport Media and should be triple packaged. For further details on sample collection please refer to the Ministry of Health Targeted Testing Strategy for Coronavirus disease 2019 (COVID 19) in Kenya.

The role of radiological tests for diagnosis of COVID-19
Imaging including chest radiographs and high-resolution CT scans are useful in monitoring the clinical course and evaluating disease severity. Chest CT scan images from patients with COVID 19 typically demonstrate bilateral peripheral ground glass opacities which are non-specific. These can be found other kinds of pneumonia. This makes the diagnostic value of chest CT scan in COVID 19 low and dependent on radiographic interpretation. Given the variability in chest imaging findings, chest radiograph or CT scan alone is not recommended for the diagnosis of COVID 19. [22]
Figure 5: Triage and management of a patient presenting with symptoms of Covid 19
Chapter 4: Management of COVID-19

The management of patients with COVID-19 depends on severity of disease at presentation. Once patient is CONFIRMED positive by a PCR or rapid antigen test categorize them into the following groups based on presentation.

Table 2a: COVID-19 severity categorization in adults and adolescents

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mild illness</td>
<td>Fever, cough, sore throat, malaise, headache, muscle pain BUT No dyspnoea (shortness of breath) and No abnormalities on chest imaging</td>
</tr>
<tr>
<td>2. Moderate illness</td>
<td>Clinical features of pneumonia (fever, cough, dyspnoea) AND/OR radiological features of pneumonia BUT Oxygen saturations (SPO2) greater than or equal to 94% on room air</td>
</tr>
<tr>
<td>3. Severe illness</td>
<td>Clinical and radiological features of pneumonia, tachypnea with RR>30 AND oxygen saturation (SPO2) less than 94% on room air</td>
</tr>
<tr>
<td>4. Critical illness</td>
<td>Features of severe illness AND Any of the following: • respiratory failure • sepsis/septic shock • multiorgan dysfunction • acute thrombosis</td>
</tr>
</tbody>
</table>

Table 2b: COVID-19 severity categorization in children

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mild illness</td>
<td>Fever, cough, sore throat, malaise, headache, muscle pain BUT No dyspnoea (shortness of breath and No abnormalities on chest imaging)</td>
</tr>
<tr>
<td>2. Moderate illness</td>
<td>Clinical signs of non-severe pneumonia (cough or difficulty breathing) AND Fast breathing* AND/OR chest indrawing</td>
</tr>
</tbody>
</table>

*Fast breathing (in breaths/min): <2months: 360; 2-11months: 350; 1-5years: 340
3. Severe illness
Child with clinical signs of pneumonia (cough or difficulty in breathing) + at least one of the following:
- Central cyanosis or SPO2 <90%;
- Severe respiratory distress (e.g., fast breathing*, grunting, very severe chest indrawing);
- General danger sign: inability to breastfeed or drink, lethargy or unconsciousness, or convulsions

*Fast breathing (breaths/min): <2months: ≥60; 2-11months: ≥50; 1-5years: ≥40

4. Critical illness
Features of severe illness AND Any of the following:
- Acute respiratory distress syndrome
- Respiratory failure requiring mechanical ventilation
- Sepsis/Septic shock
- Other organ failure requiring ICU care

5. MIS-C
Preliminary case definition: Children and adolescents 0–19 years of age with fever > 3 days AND
Two/more of the following:
- Rash or bilateral non-purulent conjunctivitis or muco-cutaneous inflammation signs (oral, hands or feet);
- Hypotension or shock;
- Features of myocardial dysfunction, pericarditis, valvulitis, or coronary abnormalities;
- Evidence of coagulopathy,
- Acute gastrointestinal problems;

AND
No other obvious microbial cause of inflammation AND
Evidence of COVID-19 (RT-PCR, antigen test or serology positive), or likely contact with patients with COVID-19.

Supportive care
Supportive care should be offered to all patients diagnosed with COVID-19. This includes the following:
1. Counselling and psychosocial support
2. Symptomatic treatment
3. Adequate nutrition and hydration
Table 3: Management of asymptomatic, mild and moderate COVID-19

<table>
<thead>
<tr>
<th>Asymptomatic or mild illness</th>
<th>Assess for eligibility for home-based care</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient qualifies if they have no risk factors for disease progression or poor outcomes (see below) and a suitable space is available at home (separate room with separate bathroom), has resources to access basic PPE for family members e.g., face masks and gloves, no house members who are increased risk of severe illness if exposed e.g., see below</td>
</tr>
</tbody>
</table>

Risk factors for poor outcome:
Age >60, coronary artery disease, stroke, diabetes, hypertension, cancer, chronic lung disease, frailty, pregnancy, immunosuppression, chronic kidney disease

Management
Symptomatic treatment for mild disease (paracetamol, antihistamines). **Steroids should NOT be used for patients with asymptomatic, mild or moderate disease.** (Isolation precautions as outlined in the IPC section)

<table>
<thead>
<tr>
<th>Moderate Illness</th>
<th>• Baseline tests - blood count, renal and liver function, HIV test, random blood sugar.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Symptomatic treatment:</td>
</tr>
<tr>
<td></td>
<td>• Fever - Paracetamol</td>
</tr>
<tr>
<td></td>
<td>• Sore throat - gargles</td>
</tr>
<tr>
<td></td>
<td>• Cough, nasal congestion - antihistamine</td>
</tr>
<tr>
<td></td>
<td>• VTE prophylaxis with Enoxaparin 40mg once a day if admitted to a health facility</td>
</tr>
<tr>
<td></td>
<td>• Where enoxaparin is not available, use low dose unfractionated heparin at 5000units subcutaneous BD)</td>
</tr>
<tr>
<td></td>
<td>• Where patient unable to use standard anticoagulation therapy, consider use of direct-acting anticoagulants</td>
</tr>
<tr>
<td></td>
<td>• Consider prophylaxis for children older than 5 years with comorbidities and not ambulant. Refer to BNF for dosage guidelines for pediatrics</td>
</tr>
</tbody>
</table>

Where there is pressure for space for isolation of patients, the following patients with moderate illness can be managed at home:
• Young <60 years
• Oxygen saturations >94% on room air
• No comorbidities
• Have easy access to a health facility in case of worsening of symptoms
• Physically active

*Where the standard of care highlighted above cannot be offered to the patient due to contraindications or adverse reactions then consult a specialist

Table 4: Management of severe and critical COVID-19

<table>
<thead>
<tr>
<th>Severe illness</th>
<th></th>
<th>Critical Illness</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Baseline Tests (Total blood count, renal and liver function, HIV test, random blood sugar)</td>
<td></td>
<td>• Baseline tests- total blood count, renal and liver function tests, HIV test, random blood sugar</td>
</tr>
<tr>
<td>• Symptomatic treatment</td>
<td></td>
<td>• Symptomatic treatment</td>
</tr>
<tr>
<td>• Oxygen supplementation to maintain SPO2s above 90% and above 92% in pregnant women (oxygen supplementation can be via nasal prongs, masks, non-rebreather masks or high flow nasal cannula - see below)</td>
<td></td>
<td>• Admit to a Critical Care Unit.</td>
</tr>
<tr>
<td>• Dexamethasone 6mg per day for up to 10 days (where dexamethasone is not available, consider using prednisone 40 mg OD or methyl prednisolone 32mg OD. This short duration of dosing does not require tapering)</td>
<td></td>
<td>• Mechanical Ventilation if no improvement in oxygenation with maximal oxygen flows with other modalities - see guide to noninvasive ventilation, tracheal intubation and ventilation below</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prone for 12 to 16 hours per day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conservative fluid management i.e., give IV fluid only if hypovolemic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Closed suctioning of secretions where available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Give Dexamethasone 6 mg per day for up to 10 days (where dexamethasone is not available, consider using prednisone 40 mg OD or methylprednisolone 32mg OD. This short duration of dosing does not require tapering)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For children - Dexamethasone 0.15mg/kg iv/PO OD to a maximum of 6mg or prednisolone 1mg/kg OD maximum 40mg OD, methylprednisolone 0.8 mg/kg IV OD maximum 32mg OD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VTE prophylaxis Enoxaparin 40mg OD once a day for the duration of hospitalization (Where enoxaparin is not available, use low dose unfractionated heparin at 5000units subcutaneous BD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Self proning for 12 to 16 hours a day (see self-proning guide below) as tolerated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Where possible, document advance directives for all patients e.g., do not resuscitate for patients who are unlikely to do well or have another terminal condition</td>
</tr>
</tbody>
</table>
Baseline Tests

Should be done for all patients who are admitted and all patients with risk factors for poor outcomes: total blood count, random blood sugar, Urea Electrolytes Creatinine, Liver function tests. HIV testing should be offered to all patients.

Chest imaging is recommended in patients with severe illness who fail to improve on standard therapy and in all patients with critical illness. Include an ECG if indicated.

Where available a C-Reactive Protein (CRP) may be useful in managing patients who acutely deteriorate.

Other Therapeutic Agents

The following drugs may have a role in the management of COVID-19. Specialist input would be required in defining the appropriate patient population, weighing benefit against risk, and cost considerations. These agents are still investigational and under emergency use authorization. This means that a patient must be educated on the evidence around their use and must consent to their use prior to prescription. Their use should be reported to the Pharmacy and Poisons Board.

Table 5: Other Therapeutic Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Potential Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tocilizumab</td>
<td>monoclonal antibody against IL-6</td>
<td>Hospitalized patients with severe and critical COVID-19 with disease progression and elevated markers of systemic inflammation (CRP >75) despite steroid use.</td>
</tr>
<tr>
<td>Baricitinib (with remdesivir)</td>
<td>Janus Kinase (JAK) 1 and 2 selective inhibitor</td>
<td>Hospitalized patients with severe COVID-19 with disease progression and elevated markers of systemic inflammation despite steroid use (Baricitinib alone) or in patients with severe COVID-19 in whom steroids are contraindicated (Baricitinib with remdesivir)</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>an antiviral agent that inhibits SARS-Co-V-2 replication</td>
<td>Hospitalized patients with severe but not-critical COVID-19 who are within 10 days from the onset of symptoms.</td>
</tr>
</tbody>
</table>

There is conflicting data on the use of remdesivir, with most clinical trials showing no mortality benefit. Some studies have shown that remdesivir may reduce duration of illness by few days and only if initiated very early after disease onset rather than at the time a patient is deteriorating.
Current evidence **does not support** the following interventions for treatment or prevention of COVID-19.
- Hydroxychloroquine or Chloroquine
- Azithromycin and empiric antibiotic therapy
- Ivermectin
- Convalescent plasma therapy
- Empiric therapeutic or intermediate dose anticoagulation
- Aspirin
- High dose steroids or steroid pulse or prolonged duration of steroid use beyond 10 days
- Vitamin C and D
- Zinc
- Ulinastatin
- Favipiravir
Figure 6a: Management Algorithm for the adult patient with COVID-19
Guidelines on Management of COVID-19 in Kenya

Pediatric COVID-19 Patient

Mild Illness
- Fever, cough, sore throat, malaise, headache, muscle pain
- BUT no dyspnoea (shortness of breath) and No abnormalities on chest imaging

Assess for eligibility for home-based isolation and care
- Counsel caregiver on the following danger signs and when to return: difficulty breathing, fast breathing, grunting, inability to breastfeed/drink, central cyanosis, confusion, reduced level of consciousness.

Fever, cough, sore throat, malaise, headache, muscle pain

Moderate Illness
- Clinical signs of non-severe pneumonia (cough or difficulty breathing)
- AND Fast breathing AND/OR chest indrawing
- Fast breathing (breaths/min): <2months: ≥60; 2-11 months: ≥50; 1-5 years: ≥40

Admit in ward with Oxygen
- Baseline tests – Total blood count, renal and liver function, HIV test, random blood sugar.
- Symptomatic treatment:
 - Fever - Paracetamol
 - Sore throat and cough - Soothe the throat with safe remedies
 - VTE prophylaxis with Enoxaparin: Consider prophylaxis for children older than 5 years with comorbidities and not ambulant. Refer to annex for paediatric dosage guidelines.

Severe Illness
- Child with clinical signs of pneumonia (cough or difficulty in breathing) + at least one of the following:
 - Central cyanosis or SPO2 <90%; severe respiratory distress (e.g., fast breathing, grunting, very severe chest indrawing); general danger signs: inability to breastfeed or drink, lethargy or unconsciousness, or convulsions
 - Fast breathing (breaths/min): <2months: ≥60; 2-11 months: ≥50; 1-5 years: ≥40

Admit in ward with Oxygen
- Baseline Tests (Total blood count, renal and liver function, HIV test, random blood sugar)
- Symptomatic treatment:
 - Oxygen supplementation to maintain SPO2s above 90% (oxygen supplementation can be via nasal prongs, masks, non-rebreather masks or high flow nasal cannula - see below)
 - Dexamethasone or prednisolone or methylprednisolone (refer to annex for dosage)
 - VTE prophylaxis
 - Enoxaparin
 - Consider prophylaxis for children older than 5 years with comorbidities and not ambulant. Refer to annex for paediatric dosage guidelines.

Critical Illness
- Any of the following: Acute respiratory distress syndrome, Respiratory failure requiring mechanical ventilation, Sepsis/Septic shock, other organ failure requiring ICU care

Admit to a Critical Care Unit.
- Baseline Tests (Total blood count, renal and liver function, HIV test, random blood sugar)
- Symptomatic treatment:
 - Conservative fluid management
 - Mechanical Ventilation if no improvement in oxygenation with other modalities - see guide to non-invasive ventilation, tracheal intubation and ventilation below
 - Closed suctioning of secretions where available
 - Dexamethasone or prednisolone or methylprednisolone
 - VTE prophylaxis
 - Enoxaparin
 - Consider prophylaxis for children older than 5 years with comorbidities and not ambulant. Refer to annex for paediatric dosage guidelines.

MIS-C
- Case definition: Children and adolescents 0–19 years of age with fever > 3 days
- AND Two of the following: rash or bilateral non-purulent conjunctivitis or mucocutaneous inflammation signs (oral, hands or feet); hypotension or shock; features of myocardial dysfunction, pericarditis, valvulitis, or coronary abnormalities; evidence of Coagulopathy, acute gastrointestinal problems; AND No other obvious microbial cause of inflammation AND Evidence of COVID-19 (RT-PCR, antigen test or serology positive), or likely contact with patients with COVID-19.

Supportive measures:
- Fluid resuscitation;
- Inotropic support;
- Respiratory support;
- (In rare cases), extracorporeal membranous oxygenation (ECMO);
- Intravenous Immunoglobulin (IVIG);
- Steroids
- Enoxaparin or
- Refer to annex for paediatric dosage guidelines.

Figure 6b: Management of Pediatric COVID-19 Patients
Oxygen therapy:

Oxygen therapy: Oxygen via nasal cannulae is indicated in those with saturations of 94% or below. Up to 4 litres of oxygen can be administered via this route. Monitoring of response can be done both via pulse oximetry and arterial blood gases.

If the patient continues desaturating despite this, higher flow oxygen will be required. Current delivery systems available include the face mask (5-10L/min) and the non-rebreather mask (up to 15 L/min). High flow nasal cannula can support flows of up to 60L/min. If the patient requires high flow oxygen, please contact critical care/pulmonology team as escalation to the ICU may be necessary.

Remember that the risk of aerosolization increases once oxygen flows of above 4L/min per minute are required and an N95 mask should be used in addition to other precautions.

* Adapted from BMJ 2020;369:m2446

Figure 7: Methods of oxygen delivery
Proning for non-intubated patients

Indicated for patients with oxygenation requirements exceeding 4 L/min to maintain goal saturations (>90% in non-chronic hypoxia cases) via nasal cannula or simple O₂ mask.

Contraindications

- Chest wall and vertebral trauma or instability
- Trauma, fracture or major surgery to the anterior face, chest, abdomen or pelvis.
- In pregnancy states, one should seek obstetric clearance prior to proning
- Confusion, agitation, and physical inability to independently change position in bed
- Active nausea and/or vomiting

Procedure

- Assess for contraindications as above, alertness and ability to reposition in bed
- Attach monitoring leads, continuous pulse oximetry, BP cuff and SpO₂
- Distractions (phones, tablets, TV etc.) can be availed to make the position more tolerable
- Documentation of vital signs should be made per ICU protocol by the bedside nurse
- Worsening oxygenation, increased work-of-breathing, worsening hypercapnia, worsening mental status, and worsening hemodynamics should prompt assessment for intubation
- Discontinuation of proning will be recommended by the ICU consultant when demonstrable improvement in respiratory status is noted or if the patient is unable to tolerate the procedure.
- Protocols on proning (including videos) are available (https://www.nejm.org/doi/full/10.1056/NEJMoa1214103)
- There is little evidence on prone positioning in pregnant women. Pregnant women may benefit from being placed in the lateral decubitus position

Table 6: Proning schedule

<table>
<thead>
<tr>
<th>Start: 30 minutes to 2 hours lying fully prone (bed flat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 30 minutes to 2 hours lying on right side (bed flat)</td>
</tr>
<tr>
<td>• 30 minutes to 2 hours sitting up (30-60 degrees) by adjusting head of the bed</td>
</tr>
<tr>
<td>• 30 minutes to 2 hours lying on left side (bed flat)</td>
</tr>
<tr>
<td>• 30 minutes to 2 hours lying prone again</td>
</tr>
<tr>
<td>• Continue to repeat the cycle…….</td>
</tr>
</tbody>
</table>
Decision making for ventilatory support for critically ill patients

Covid Patient Admitted requiring supplemental O2
- Start O2 via NC to maximum of 4 lpm
- Consider HFNC if FiO2 requirement is >90% to maintain SpO2 >90%
- Perform initial ABG, ROX, P/F Ratio
- Implement ROX monitoring Q4 hours

P/F Ratio < 150 mmHg
- ROX < 3.8
- Endotracheal Intubation
- Lung protective ventilation strategy 4-6ml/kg of IBW
- Lung recruitment and PEEP titration
 - Check P Plat < 30 Driving pressure < 15
 - Use ARDS net High Peep Protocol preferred
- Prone positioning if P/F ratio < 100
- Consider transfer for ECMO if meets criteria

P/F Ratio > 150 mmHg
- HFNC preferred up to FiO2 80% continue if ROX > 4
- CPAP
 - If FiO2 requirement is > 80% start CPAP of 10-15mgHg max.
 - Maximum VT target 9ml/kg IBW
 - Ensure VT alarm set at 10ml/kg IBW
 - Check hourly ROX index
 - ABG within 2 hours
 - Notify MD if ROX remains < 3.8
 - Consider DNI/GIP
 - Consider intubation

HFNC
- Titrate to target SpO2 > 90%
- ROX index 3.9-5
- Monitor Closely

HFNC Preferred over NIV
- Consider CPAP/BiPAP with following guidelines:
 - COPD with hypercapnia respiratory acidosis
 - Maximum VT target 9ml/kg IBW
 - ROX > 4
 - ABG within 2 hours of initiation
- Continue with CPAP/BiPAP or HFNC

Figure 8: Decision making for ventilatory support

COVID-19 Airway Management

Table 7: COVID-19 Airway Management

<table>
<thead>
<tr>
<th>Planning</th>
<th>Intervene early - aim to avoid emergency intubation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Pressure room or Normal pressure with strict door policy.</td>
</tr>
<tr>
<td></td>
<td>Clinicians proficient with intubation to be involved to increase first-pass success.</td>
</tr>
<tr>
<td></td>
<td>Early airway assessment to be done to anticipate difficult airway.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prepare</th>
<th>Assemble 3-4-person Airway Team;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Airway Operator</td>
</tr>
<tr>
<td></td>
<td>- Airway Assistant</td>
</tr>
<tr>
<td></td>
<td>- In room runner</td>
</tr>
<tr>
<td></td>
<td>- Door Runner</td>
</tr>
<tr>
<td></td>
<td>Share Airway Strategy.</td>
</tr>
<tr>
<td></td>
<td>Use a dedicated COVID intubation checklist</td>
</tr>
<tr>
<td></td>
<td>Use COVID-19 Intubation Tray (see below).</td>
</tr>
</tbody>
</table>
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

| PPE | Hand Hygiene (HH).
| | Donning: HH > Gown > Mask > Eye-protection > Hat > HH > Gloves.
| | Spotter to perform "Buddy Check" to ensure correct PPE fit.
| | PPE includes;
| | I. Impervious gown
| | II. Theatre hat/hair net
| | III. N95 mask
| | IV. Consider face shield rather than goggles for eye protection
| | V. Consider double gloves.

| Pre-Oxygenation | 45 degrees head up position.
| | Pre-oxygenate with 100% FiO₂ via a NRM mask using 2 hands for full 5 minutes. (Cover with surgical mask)
| | Ensure a square ETCO₂ waveform, to be confident of no leaks (if available)
| | Avoid Apneic Oxygenation techniques due to aerosolization risk.

| Perform intubation | Use laryngoscope (with blade sized to patient)
| | Use rapid sequence intubation (RSI) technique. Initial neuromuscular blockade can be achieved with (1.5mg/kg IBW rocuronium OR 1.5mg/kg TBW suxamethonium).
| | Wait 60 seconds for paralysis to take effect - avoid triggering cough.
| | No ventilation prior to intubation unless for rescue oxygenation.

| Post-intubation | Inflate cuff BEFORE initiating ventilation and monitor cuff pressures to minimize leak.
| | A nasogastric tube should be placed at the time of intubation to avoid further close contact with the airway
| | If COVID-19 status not already confirmed take a deep tracheal aspirate for virology using closed suction
| | Remove outer gloves (if on), dispose of airway equipment in sealed bag.
| | Doffing: Gloves > Gown > HH > Hat > Eye Protection > Mask > HH. Use a Spotter.
| | Chest X-ray should usually be performed to confirm tube position but should be delayed until after central line insertion to minimize staff entries into the room.
| | Debrief and share lessons.

Additional notes:
- To minimize the risk of virus aerosolization to the intubation team; Avoid nasal oxygen therapy, simple facemask and non-rebreather masks during pre-oxygenation.
- Awake intubation not indicated because of risk of aerosolization
- Connection / Disconnection (Apply the viral filter directly to the ETT. Only disconnect the circuit on the ventilator side of the viral filter). Clamp ETT prior to disconnection.
- Once the patient is intubated, closed suction systems should be used to minimize aerosolization of the virus.
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

Intubation procedure and post-intubation management

Figure 9: Emergency tracheal intubation checklist COVID-19

Adopted from the European Society of Critical Care Medicine*
<table>
<thead>
<tr>
<th>ITEM (tick if available on tray)</th>
<th>TICK</th>
<th>ITEM (tick if available on tray)</th>
<th>TICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adult/paediatric BVM</td>
<td></td>
<td>2. PPE Sets for 4-5 persons of the intubation team.</td>
<td></td>
</tr>
<tr>
<td>5. Sachet lubricant (Opti-lube/KY jelly in sachet)</td>
<td></td>
<td>6. 100ml N/Saline or 10 vials water for injection</td>
<td></td>
</tr>
<tr>
<td>7. In line suction catheter (closed tracheal suction system)</td>
<td></td>
<td>8. Sterile Wound dressing set- for urinary catheter insertion</td>
<td></td>
</tr>
<tr>
<td>9. Oropharyngeal airway and nasopharyngeal airway (sized to patient)</td>
<td></td>
<td>10. Artery forceps/tube clamp – for clamping ET tube prior to connection/disconnection (to ventilator/BVM)</td>
<td></td>
</tr>
<tr>
<td>11. Supraglottic airway/LMA/iGel (sized to patient)</td>
<td></td>
<td>12. Local anaesthesia-1 bottle 1% Lidocaine for CVC</td>
<td></td>
</tr>
<tr>
<td>13. CVC adult or paediatric</td>
<td></td>
<td>14. Heparin</td>
<td></td>
</tr>
<tr>
<td>15. NG Tube</td>
<td></td>
<td>16. 70% alcohol or 2% chlorhexidine or Povidone-iodine</td>
<td></td>
</tr>
<tr>
<td>17. Silicon/Foley’s urinary Catheter</td>
<td></td>
<td>18. Clear CVS dressing</td>
<td></td>
</tr>
<tr>
<td>19. Specimen bottles (Blood culture, red, purple, blue, green topped bottles, sputum, urine containers)</td>
<td></td>
<td>20. Clear Plastic(polythene) drape (plus frame) – to cover patient face during intubation</td>
<td></td>
</tr>
<tr>
<td>21. Resuscitation Drugs (Adrenaline, Atropine, Amiodarone, Thrombolytic agent e.g., reteplase or alteplase)</td>
<td></td>
<td>22. Syringes 10 mlx10, 50ml x 2</td>
<td></td>
</tr>
<tr>
<td>23. Defibrillator/Pacing Adhesive Pads</td>
<td></td>
<td>24. Point of care ultrasound machine (must be dedicated to COVID care)</td>
<td></td>
</tr>
</tbody>
</table>
Induction Drugs

- Ketamine 1.5-2 mg/kg IBW
 OR
- Fentanyl 2-10 mcg/kg TBW
 OR
- Midazolam 0.1-0.3 mg/kg TBW
 OR
 Propofol 1-2.5 mg/kg IBW + (0.4 x TBW) (others simply use 1.5 mg/kg x TBW as the general guide)
 OR
 Thiopental 3-5 mg/kg TBW
 (Tailor to the patients and availability)
- Succinylcholine 1-2 mg/kg TBW
 OR
- Atracurium 0.2-0.4 mg/kg
 OR
- Rocuronium 1.5 mg/kg IBW
 OR
- Vecuronium 0.15-0.25 mg/kg IBW
 OR
- Cisatracurium 0.15-0.2mg/kg bolus
 (Tailor to the patients and availability)

Neuromuscular blockers (Muscle relaxants)

- Ketamine 1.5-2 mg/kg IBW
 OR
- Fentanyl 2-10 mcg/kg TBW
 OR
- Midazolam 0.1-0.3 mg/kg TBW
 OR
 Propofol 1-2.5 mg/kg IBW + (0.4 x TBW) (others simply use 1.5 mg/kg x TBW as the general guide)
 OR
 Thiopental 3-5 mg/kg TBW
 (Tailor to the patients and availability)
- Succinylcholine 1-2 mg/kg TBW
 OR
- Atracurium 0.2-0.4 mg/kg
 OR
- Rocuronium 1.5 mg/kg IBW
 OR
- Vecuronium 0.15-0.25 mg/kg IBW
 OR
- Cisatracurium 0.15-0.2mg/kg bolus
 (Tailor to the patients and availability)

Sedation

- 2% propofol 5-15ml/h OR
- Morphine 0.005mg/kg/hour OR
- Midazolam(50mg/50ml) 2-5ml/hr.
- Dexmedetomidine 0.02-0.7 mcg/kg/hr.
- Ketamine 1.5-2 mg/kg IBW

Endotracheal tube

ETT tubes 7.0:7.5; 8.0 (Secure ET at level ET tube size X3 e.g., ET tube size 7, then secure tube at 21 cm mark.)

CVC

16cm Right sided insertion/20cm Left sided insertion sutured at hub

Nasogastric tubes

14/16 or 18 Fr

Initial Ventilator Settings

Individualize initial ventilator settings-based patient’s mechanics. (NB: Pressure control modes may be preferable)

NO BAGGING BEFORE ETT
To prevent cough, Consider pre-medications with lidocaine 0.5-1.0mg/kg IV
+ Glycopyrrolate 200mcg IV

USE BVM or NRM/NIV Mask (unvented) to pre-oxygenate.

Refer to Table 8

Start weaning if saturation 95-100 PO2>10Kpa (>75mmHg) at next ABG.
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

| Blood tests (Red, Blue, Green, Purple top, Blood Culture bottles, sputum containers) | • Initial ABGA at 2 hrs. post intubation
• ABG every 4:6:12 hrs.
• FBC, LFT, UE/Cr, every 24hrs
• Procalcitonin when indicated
• Tracheal aspirate (for COVID PCR, GeneXpert, MCS) on admission and subsequently as indicated.
• Blood and urine culture on admission and subsequently when indicated
• Troponin and fungal studies when indicated |
|-----------------------------|---|
| Acceptable parameters | • SPO2 88-95%
• PaO2 between 55 and 80 mmHg (7.3 to 10.6 kPa)
• Respiratory acidosis with PH > 7.25 especially if prone
• Plateau Pressure < 30mmHg |
| Paralyze with Neuromuscular Blockers if any of the following | • Clinically significant Ventilator asynchrony despite optimum sedation.
• Refractory hypoxemia: for lung recruitment maneuvers.
• Intubated and prone position
• For safe transportation |
<table>
<thead>
<tr>
<th>Blood Pressure</th>
<th>Consider initial fluid bolus at 4mL/kg over 10-15 minutes to ascertain if the patient is fluid responsive. If fluid responsive then give maintenance infusion at 5mL-20mL/kg/24hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Accept MAP>65mmHg</td>
<td></td>
</tr>
<tr>
<td>• Noradrenaline 0.01-3.3 mcg/kg/min</td>
<td></td>
</tr>
<tr>
<td>• DILUTION (Formulation of 1mg/ml Norepinephrine/noradrenaline add 2 mL to 48 mL in 5% dextrose by syringe pump OR Formulation of 1mg/ml Norepinephrine/noradrenaline add 20 mL to 480 mL 5% dextrose by drip counter (Soluset) initial rate 10mL/hr.(0.16mg/hr.) to 20mL/hr.(0.33mg/hr.) -FIRST LINE</td>
<td></td>
</tr>
<tr>
<td>• If Noradrenaline>30mL/hr. add Adrenalin(epinephrine) (start at 20mL/hr.)</td>
<td></td>
</tr>
<tr>
<td>• 2 fluid boluses/24 hrs. max</td>
<td></td>
</tr>
<tr>
<td>• Consider dobutamine as 3rd line</td>
<td></td>
</tr>
<tr>
<td>If PH <7.25 (metabolic acidosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Match patient’s minute ventilation demands.</td>
</tr>
<tr>
<td></td>
<td>• Increase RR (I:E ratio target of 1:1)</td>
</tr>
<tr>
<td></td>
<td>• Use flow-time scalar to avoid gas trapping</td>
</tr>
<tr>
<td></td>
<td>• In severe acidosis consider NaHCO3</td>
</tr>
<tr>
<td></td>
<td>Calculate deficit (1/2 the volume as bolus and ½ as infusion) and dialysis</td>
</tr>
<tr>
<td></td>
<td>PH 7.25 and acceptable PCO2 55 mmHg</td>
</tr>
<tr>
<td>Permissive hypercapnia</td>
<td></td>
</tr>
</tbody>
</table>
If PO2 still <7kpa (60mmHg)

Adjust PEEP according to FiO2/PEEP combinations table below

<table>
<thead>
<tr>
<th>Mild ARDS</th>
<th>Moderate to Severe ARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiO2</td>
<td>PEEP</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>8</td>
</tr>
<tr>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
</tr>
<tr>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>0.8</td>
<td>14</td>
</tr>
<tr>
<td>0.8</td>
<td>14</td>
</tr>
<tr>
<td>0.9</td>
<td>16</td>
</tr>
<tr>
<td>0.9</td>
<td>18</td>
</tr>
<tr>
<td>1.0</td>
<td>18-24</td>
</tr>
</tbody>
</table>

Stepwise PEEP titration (increments of up to 2-5 cmH2O)

Use lower inflexion point of deflection P-V loop

Goal: PaO2 > 60 mmHg, Driving Pressure (Plateau pressure- PEEP) < 15cm H2O, best compliance (~50% of predicted compliance; > 40 cc/cmH2O)

Prone positioning: P: F Ratio < 100
Consult an Anaesthetist / Intensivist with PEEP >14

Electrolytes targets
- K > 4.0 mmol
- Mg > 1.0 mmol
- PO4 > 0.7
- Na > 135
- Ca > 2.2

If abnormal, correct as per standard guidelines
Table 8: Sedation and analgesia protocol

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Global** | - Patients with ARDS resulting in ventilator asynchrony despite ventilator adjustments may require lower RASS goals of -2 to -3.
- If ventilator asynchrony persists despite RASS goal of -2 to -3, a RASS goal of -4 to -5 should be attempted. If ventilator asynchrony persists, consider neuromuscular blockage with a RASS goal of -4 to -5.
- Daily evaluation of analgesia and sedation, as well as the need for neuromuscular blockade is imperative. Minimization of medications should be considered where possible to conserve supply.
- In general, patients on vasopressors who are not considered resuscitated should not receive oral therapies.
- When implementing the therapies below, consider patient specific factors such as history of substance abuse, age, or body weight.
- Selection of agent may be impacted by availability at each institution. |
| **Analgesia** | Analgesic therapy should not be used with a goal of achieving a determined RASS goal. If a patient has a BPS<6, but higher than desired RASS, a sedative medication should be initiated.
1. Intermittent IV analgesia: Use of intermittent IV analgesia to achieve goal BPS or RASS is recommended as first line.
2. If goal RASS is not achieved or BPS remains >6 with the above measures, refer to the UPHS PAD guidelines for initiation of IV continuous infusion therapy.
In mechanically ventilated patients that require continuous infusion analgesia that do NOT require frequent neurologic assessment, the following algorithm should be applied:
3. Continuous infusion analgesia:
 a. Fentanyl is the preferred analgesic for continuous infusion. Hydromorphone is an alternative analgesic for continuous infusion.
 b. Morphine is an alternative analgesic for continuous infusion, but not preferred in ICU patients. Patients with renal dysfunction may require lower doses due to accumulation. Monitor for hypotension upon initiation.
4. Oral analgesic therapy (Mechanical ventilation expected >24hrs): Following initiation of continuous infusion therapy, oral analgesic therapy could be considered to reduce intravenous requirements:
 - Oxycodone 10-20 mg q6h standing (May titrate)
 - Hydromorphone 4-6 mg Q4-6h standing (May titrate) |
Sedation

- Sedation should be initiated in patients unable to achieve goal RASS despite achievement of BPS <6.
- In mechanically ventilated patients that require continuous sedation for agitation or ventilator synchrony, not requiring frequent neurologic assessment, the following algorithm should be applied.

A. If a patient has a RASS of -4/-5, but continues to demonstrate ventilator asynchrony, despite appropriate ventilator manipulation, therapy with a paralytic agent should be initiated.

B. Additional use of sedation with a low RASS WILL NOT aid in increased ventilator synchrony and will lead to inappropriate overdosing of patients and waste of medication.

1. Continuous infusion sedation
 a. Propofol continuous infusion is the sedative of choice
 i. Patients should be evaluated for baseline triglyceride (TG) monitoring and Q48h
 ii. Discontinue agent if TG exceed 500 mg/dL.
 b. Benzodiazepines
 i. Midazolam or lorazepam are the preferred continuous infusion benzodiazepines (institutional preference or availability)
 c. Dexmedetomidine
 i. Achieves light sedation (RASS -1/-2). This agent should be used consistent with current UPHS guidelines and should not be used in patients requiring moderate to deep sedation (RASS -3 to -5) and/or neuromuscular blockade.
 ii. Caution should be used in patients displaying signs of reduced ventricular function, bradycardia or heart block.
 d. Ketamine 1.5-2 mg/kg IBW

2. Intermittent sedation
 a. Consider the below therapies if propofol or continuous benzodiazepines are unavailable and dexmedetomidine is contraindicated or anticipated to be unsuccessful in achieving goal sedation.
 i. Benzodiazepines
 ii. Phenobarbital (IV to PO)
 1. Loading dose: 130 mg IV x 1 dose
 2. Maintenance therapy: 64.8 – 97.2 mg via gastric tube q8h (or 65 –130 mg IV q8h if unable to tolerate orals)
 a. Titrate to sedation goal while not exceeding a level of 50mg/L

3. Oral sedation therapy
 a. Following initiation of continuous infusion therapy, oral therapies could be considered to reduce intravenous requirements:
 i. Clonazepam 1-2 mg Q8h (May titrate)
 ii. Lorazepam 1-2 mg Q6h (May titrate)
 iii. Oxazepam 10 - 30 mg Q8h (May titrate)
b. Other
 i. Quetiapine or alternative antipsychotic. Exercise caution in patients on adjunctive medications (consult with clinical pharmacy) other QTc prolonging medications.
 ii. Gabapentin
 iii. Valproic acid

<table>
<thead>
<tr>
<th>Neuromuscular blockade</th>
</tr>
</thead>
<tbody>
<tr>
<td>❖ Neuromuscular blockade is only required in the presence of ventilator dyssynchrony and deep sedation (RASS -4 to -5)</td>
</tr>
<tr>
<td>❖ Ensure adequate sedation and analgesia are achieved prior to neuromuscular blockade as evidenced by RASS -4 to -5 and BPS <6. If BIS is available, titrate to 40-60.</td>
</tr>
<tr>
<td>❖ Do not reduce analgesia or sedation once neuromuscular blockade has been established.</td>
</tr>
<tr>
<td>❖ Analgesics and sedatives SHOULD NOT be titrated to reduce hypotension. Consider initiation of a vasopressor if hypotension persists.</td>
</tr>
<tr>
<td>❖ Paralytic requirement should be evaluated daily to limit use</td>
</tr>
</tbody>
</table>

1. Intermittent dosing:
 - Vecuronium is the preferred agent for intermittent dosing (Alternative: Rocuronium)
 - Dosing: 0.1 – 0.2 mg/kg every 4-6 hours
 - Dose and frequency will vary based on organ dysfunction; Patients with significant organ dysfunction may require smaller and less frequent dosing
 - If initial dosing of intermittent vecuronium or rocuronium does not achieve desired ventilator synchrony and/or TOF 1-2/4, increase dose or frequency as appropriate
 - If patient goals are not achieved or requires more than Q4h dosing, begin continuous infusion neuromuscular blocking agent

2. Continuous infusion:
 - Atracurium is the preferred NMBA for patients without renal/liver dysfunction
 - Cisatracurium is permitted for patients with significant organ dysfunction

Appendix 1: Opioid Conversion

Equianalgesic Dosing of Intravenous Opioids

Patients transitioning between agents should be given as a bolus with an equianalgesic dose of the new medication and started on an appropriate dose of continuous infusion. Prior intravenous therapy should then be discontinued.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Equianalgesic IV Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl</td>
<td>200 mcg</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>3 mg</td>
</tr>
<tr>
<td>Morphine</td>
<td>20 mg</td>
</tr>
</tbody>
</table>
Extubation practices

The following recommendations should be observed:

1. Patients should ideally be ready for extubation onto facemask. Patients should be assessed for readiness for extubation onto facemask.
2. NIV and HFNO should be avoided where possible.
3. Two staff members should perform extubation.
4. The same level of PPE should be worn for extubation as is worn by the team during intubation.
5. The patient should not be encouraged to cough.
6. A simple oxygen mask should be placed on the patient immediately post extubation to minimize aerosolization from coughing.
7. Oral suctioning may be performed, with care taken not to precipitate coughing.
HEMODYNAMIC SUPPORT

Preliminary data from China reported highly variable prevalence of shock in adults with COVID-19 (17-35%), depending on population, severity of illness, and definition of shock.

Cardiac injury reported in 7% to 23% with shock frequently cited as main reason for death, maybe at least partly due to fulminant myocarditis.

For adults with COVID-19 and shock, using dynamic parameters, skin temperature, capillary refilling time, and/or lactate over static parameters to assess fluid responsiveness is suggested due to availability and possible improvements in mortality, length of stay and duration of MV.

FLUIDS

Using a conservative, over a liberal fluid strategy is suggested for acute resuscitation. In the absence of data demonstrating a benefit from the use of liberal fluid strategies in critically ill patients with sepsis/ARDS (majority of COVID-19 ICU pts develop ARDS). Using crystalloids over colloids is recommended, with some colloids being harmful, all colloids being more costly, and limited availability of colloids in some settings. Using buffered/balanced crystalloids suggested over unbalanced crystalloids, in the absence of apparent harm, and roughly equivalent costs available for NaCl 0.9% reasonable alternative. It is Not recommended:

♦ Using hydroxyethyl starches due to clinically important harm/no suggestion of benefits.
♦ Using gelatins, in the absence of any benefit, and with higher costs.
♦ Using dextrans due to possible increased risk of blood transfusion (bleeding)/higher costs.
♦ Routinely using albumin for initial resuscitation, due to absence of benefit, cost/limited availability.

VASOACTIVE AGENTS

Titrating to target MAP of 60-65 mmHg suggested due to indication of improved outcome if lower targets (& no firm indication of harm)

Norepinephrine (NE) suggested as first-line agent, as most widely studied vasoactive agent with lower prior risk of undesirable effects. If NOT available, vasopressin or epinephrine suggested, both studied without clear evidence for harm; consider, when choosing, availability/contraindications (potential concerns for vasopressin include digital ischemia; tachycardia/excess lactate production for epinephrine).

Using dopamine is NOT recommended if NE is available, based on increased risk of harm including possible increased mortality. Adding vasopressin as a second-line agent is suggested, over titrating NE dose, if target MAP cannot be achieved. If shock with evidence of cardiac dysfunction & persistent hypoperfusion despite fluid resuscitation/NE, adding dobutamine, over increasing NE dose, is suggested based on a physiological rationale.

If refractory shock, low-dose corticosteroid therapy ("shock-reversal") is suggested, as may shorten time to resolution of shock, and ICU/hospital length of stay (major considerations with regards to costs)

SCC guidelines on management of critically ill with COVID-19

Figure 10: Haemodynamic support
Table 9: Measures to prevent complications

<table>
<thead>
<tr>
<th>Anticipated Outcome</th>
<th>Interventions</th>
</tr>
</thead>
</table>
| Reduce days of invasive mechanical ventilation | • Use weaning protocols that include daily assessment for readiness to breathe spontaneously
• Minimize continuous or intermittent sedation, targeting specific titration endpoints (light sedation unless contraindicated) or with daily interruption of continuous sedative infusions
• Proning for 12-16 hours per day |
| Reduce incidence of ventilator associated pneumonia | • Oral intubation is preferable to nasal intubation in adolescents and adults
• Keep patient in semi-recumbent position (head of bed elevation 30-45°)
• Use a closed suctioning system; periodically drain and discard condensate in tubing
• Use a new ventilator circuit for each patient; once patient is ventilated, change circuit if it is soiled or damaged but not routinely
• Change heat moisture exchanger when it malfunctions, when soiled, or every 5–7 days |
| Reduce incidence of other hospital acquired infections | • Central line associated infections - use a checklist with completion verified by a real-time observer to remind of each step needed for sterile insertion and as a daily reminder to remove catheter if no longer needed
• Catheter associated urinary tract infections - avoid urethral catheterization where possible. If a catheter is indicated, it should be removed as soon as possible
• Avoid using antibiotics unless there is a clear infection. Practice antimicrobial stewardship |
| Reduce incidence of venous thromboembolism - Switch this row with the one below | • Use pharmacological prophylaxis (low molecular-weight heparin 40mg SC [preferred if available] or heparin 5000 units subcutaneously twice daily) in adolescents and adults without contraindications.
• For patients who cannot use heparin consider direct acting anticoagulants e.g., fondaparinux and rivaroxaban
• For those with contraindications, use mechanical prophylaxis (intermittent pneumatic compression devices) |
| Reduce incidence of pressure ulcers | • Turn patient every two hours
• Use ripple mattresses for ICU patients |
Guidelines on Management of COVID-19 in Kenya

| Reduce incidence of stress ulcers and gastrointestinal bleeding | • Give early enteral nutrition (within 24–48 hours of admission)
| • Administer histamine-2 receptor blockers or proton-pump inhibitors in patients with risk factors for GI bleeding
*Risk factors for gastrointestinal bleeding include mechanical ventilation for ≥48 hours, coagulopathy, renal replacement therapy, liver disease, multiple comorbidities, and higher organ failure score |
| Reduce incidence of ICU-related weakness | • Actively mobilize the patient early in the course of illness when safe to do so |

Management of special populations:

Children

Reassure parents and involve them in caring for their child, most children will have mild symptoms - much milder than those seen in adults.

- Be extra-vigilant in children with pre-existing conditions (e.g., long-term respiratory conditions, immunocompromised from disease or treatment and cyanotic heart disease, sickle cell anemia).
- Chest radiographs, laboratory blood tests, and blood gases are not routinely indicated. Consider these only in children with persistent fever, altered fluid balance, signs of liver dysfunction, or respiratory failure.
- The following medical treatments are likely to have more side-effects than beneficial effects in children and are not routinely indicated: bronchodilators, antibiotics, antivirals, and diuretics.
- Escalate respiratory support as per the respiratory failure pathway – do not use high flow nasal cannula oxygen if the child is saturating adequately with low flow oxygen.

Pregnant women

Pregnant women with suspected or confirmed COVID-19 should be treated with supportive therapies as described above, taking into account the physiologic adaptations of pregnancy. The use of investigational therapeutic agents outside of a research study should be guided by individual risk-benefit analysis based on potential benefit for mother and safety to foetus, with consultation from a specialist. Emergency delivery and pregnancy termination decisions are challenging and based on many factors: gestational age, maternal condition, and foetal stability. Consultations with obstetric, neonatal, infectious disease and intensive care specialists (depending on the condition of the mother) are essential.

Lactating women

A mother with confirmed COVID-19 or who is symptomatic should take all possible precautions to avoid spreading the virus to her infant, including washing her hands before touching the infant and wearing a face mask, if possible, while breastfeeding. If expressing breast milk with a manual or electric breast pump, the mother should wash her hands before touching any pump or bottle parts and follow recommendations for proper pump cleaning after each use. If possible, consider having someone who is well to feed the expressed breast milk to the infant.
Recognizing and managing co-morbidities in patients with COVID 19

Local experience has shown that up to 30% of patients presenting with severe disease have underlying poorly controlled comorbidities, the most common being cardiovascular disease, diabetes mellitus, HIV, hypertension, asthma and other chronic lung diseases.

It is important that comorbidities are identified early to allow appropriate management. Proper and complete history taking and physical examination is critical and should be carried out on each patient. A record of chronic medication should be indicated to avoid treatment disruptions. A multidisciplinary team should be involved in management of patients with comorbidities and early specialist consultation is encouraged.

Considerations for individuals with diabetes mellitus

It is important to note that those patients living with diabetes who are well controlled with no significant comorbidities have a significantly lower risk of developing severe complications of COVID-19 and their risk is comparable to that of the general population. (12)

- The risk associated with COVID-19 infection is similar in individuals who have either type 1 or type 2 diabetes excluding other risk factors such as age, micro and macro vascular complications, comorbidities and glycemic control. (12)

The following individuals with diabetes are considered most vulnerable:

- Those with inadequately controlled diabetes mellitus, specifically with a HBA1c reading > 7.6% or those with recently fluctuating sugars.
- Patients more than 55 years of age.
- Patients with diabetes and concomitant comorbidities such as heart failure, hypertension, chronic obstructive pulmonary disease, chronic kidney disease, cancer and HIV who are already known to have a significant impairment in their immune function.

Precautions with oral hypoglycemic agents

- Metformin should be withdrawn in patients with hypoxia or hypotension to avoid the risk of lactic acidosis.
- Sulfonylureas (chlorpropamide, glibenclamide, glimepiride, glyburide, glipizide) and meglitinides (repaglinide, nateglinide) should be used with caution in patients with reduced feeding to avoid risk of hypoglycemia.
- Sodium Glucose Transporter (SGLT-2) inhibitors (e.g., Dapagliflozin and Canagliflozin) should be stopped due to risk of dehydration and euglycemic ketoacidosis.

*Steroids can induce hyperglycemia even in a non-diabetic patient and steroid-induced hyperglycemia should be managed using insulin.

Feeding

- Enteral feeding should be encouraged.
- In critically ill patients commercial enteral or parenteral feeds can increase the insulin requirements.
Diabetic Ketoacidosis/Hyperosmolar Hyperglycemic State (DKA/HHS)

- COVID-19 infection in individuals who have either type 1 or type 2 diabetes can put them at a higher risk of developing diabetic ketoacidosis. The same treatment protocols for managing diabetic ketoacidosis are used to treat patients with diabetes who develop diabetic ketoacidosis (DKA) or Hyperosmolar hyperglycemic state (HHS) secondary to COVID-19 infection.

- Hyperglycemia without DKA/HHS
 - The management of diabetes in hospitalized patients with COVID-19 is similar to the management of other hospitalized patients with diabetes, except for the presence of often extreme, labile insulin resistance that resolves with improvement in COVID-19, and the need to minimize injection frequency in order to maximize safety for health care staff.
 - In general, the goals of treatment are the same as in other hospitalized patients (e.g., avoid severe hyperglycemia, volume depletion, electrolyte abnormalities, hypoglycemia and ensure adequate nutrition).
 - Insulin is the preferred treatment for hyperglycemia in patients hospitalized with moderate to severe COVID-19
 - A blood glucose target of 6 to 10 mmol/L is reasonable for most hospitalized patients. Many patients have severe insulin resistance and require high doses of insulin to achieve these goals.

- Patients with type 1 diabetes have an absolute requirement for insulin at all times to prevent ketosis, whether or not they are eating. For patients with type 2 diabetes, the need for insulin therapy may be temporary.
 - If possible, a basal–bolus regimen is preferred, which refers to the combination of a long-acting basal insulin (Glargine, NPH) with a rapid-acting insulin at mealtimes.
 - The clinician should watch out for hypoglycemia especially for those with reduced caloric intake and as the inflammation reduces, and the insulin dose should be adjusted accordingly.

Table 10: Diagnostic criteria and severity of DKA/ HHS

<table>
<thead>
<tr>
<th></th>
<th>Mild DKA</th>
<th>Moderate DKA</th>
<th>Severe DKA</th>
<th>HHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma glucose (mmol/L)</td>
<td>>13.9</td>
<td>>13.9</td>
<td>>13.9</td>
<td>>33.3</td>
</tr>
<tr>
<td>Arterial pH</td>
<td>7.25-7.30</td>
<td>7.00-7.24</td>
<td><7.00</td>
<td>>7.3</td>
</tr>
<tr>
<td>Serum bicarbonate (mEq/L)</td>
<td>15-18</td>
<td>10-<15</td>
<td><10</td>
<td>>15</td>
</tr>
<tr>
<td>Urinary ketones</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Small</td>
</tr>
<tr>
<td>Mental status</td>
<td>Alert</td>
<td>Alert/ Drowsy</td>
<td>Stupor/ Coma</td>
<td>Stupor/Coma</td>
</tr>
</tbody>
</table>
• Mild to moderate DKA/ HHS: Subcutaneous insulin protocols (rather than intravenous insulin infusions) are being used with increasing frequency to treat mild to moderate DKA or HHS during the COVID-19 pandemic, when intra-venous insulin may not be practical owing to the need to limit frequency of contact of staff with patients. In this setting, dosing and monitoring should be performed every two to four hours.
• Subcutaneous insulin protocols are best used in patients with mild to moderate DKA without other serious comorbidities.
• Severe DKA: Insulin infusions should be used for patients with severe DKA, acute heart failure or coronary syndrome, chronic kidney disease (CKD) stage 4 or 5 or end-stage renal disease (ESRD), acute liver failure or cirrhosis, anasarca, weight >120 kg, treatment with high-dose corticosteroids, or in women who are pregnant.
• Diabetes UK Protocol (http://www.diabetesorg.uk/resourcesCOVIDDKA-SC-v3.3pdf)
 o Initiate basal insulin (NPH, Glargine) at 0.15units/Kg and administer every 24 hours.
 o 0.4 units/Kg of soluble/regular insulin is administered every 4 hours. When RBS is less than 13.9mmol/l, reduce to 0.2units/Kg every 4 hours until DKA/HHS resolves.
GUIDELINES ON MANAGEMENT OF COVID-19 IN KENYA

1. HYDRATION

Fluid deficit approx. 100ml/kg (7l in 70kg person)
Assess:
• Fluid state
• Co-morbidies (i.e. Cardiac/ renal fnx)
• Response to fluids

2. POTASSIUM

URGENT-Blood gas (AB) result
Total K deficit ≥ 3.5mmol/L
If Hyperkalemia Risk:
(Recommended rates below do not apply)
Anuric renal failure
Chronic renal failure
HyperKalemia on presentation

3. Volume expansion commenced (>1 Litre)
AND
Potassium > 3.5

4. INSULIN

RAPID INSULIN – Rapid insulin 0.1U/Kg as infusion (PER TABLE BELOW)
NB: CAN GIVE 0.1U/KG IV STAT If infusion rate per table below) is less<0.14U/kg/hour

BASAL INSULIN Give subcutaneous basal insulin (i.e. lantus) even while on IV insulin infusion

Recommendation Fluid Rates

<table>
<thead>
<tr>
<th>Rate</th>
<th>Serum Potassium</th>
<th>Recommended Rate of KCL</th>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litre 1 Stat</td>
<td><3.0</td>
<td>40mmol/hr</td>
<td>Using CVC + cardiac monitoring</td>
</tr>
<tr>
<td>Run over 1 hour</td>
<td>3.0-4.0mmol/l</td>
<td>20mmol/hr</td>
<td>Using CVC + cardiac monitoring</td>
</tr>
<tr>
<td>Run over 2 hour</td>
<td>4.0-5.5mmol/l</td>
<td>10mmol/hr</td>
<td>Using CVC or peripheral line</td>
</tr>
<tr>
<td>Run over 4 (250ml/hr) to 12 (83ml/hr) hour (depending on fluid status/renal function)</td>
<td>>5.5mmol/l</td>
<td>NIL</td>
<td>CVC-central venous catheter; Dilution – 10mmol KCL in 100ml 0.9% saline of 5% dextrose</td>
</tr>
</tbody>
</table>

Fluid – 0.9% saline or Ringer’s lactate preferred
If sodium >148mmol 0.45% saline preferred or 5% dextrose

(To make 500ml 0.45% = 250ml 0.9% saline +250 ml sterile water to make 1000ml 0.45% saline 500ml 0.9% saline +500ml sterile water)

Monitor Potassium: Initially 1 hourly, then when K ≥ 4.0 every 2 hourly

RAPID INSULIN INFUSION RATES

<table>
<thead>
<tr>
<th>RBS (mmol/L)</th>
<th>UNITS OF INSULIN/hr</th>
<th>UNIT ON PUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.1-6.0</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>6.1-8.0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8.1-12.0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12.1-16.0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16.1-20.0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>>20</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

When RBS ≤ 14mmol ADD 5% Dextrose 12hourly(125ml/hr) but continue with ringer’s or 0.9% saline together but at slower rate

Figure 11: Diabetic ketoacidosis treatment chart (adults)
Chapter 5: Guidance for ending isolation for COVID-19 patients

Background

In order to stop transmission of COVID-19, and to aid public health prevention measures, it is paramount that at the time of discharge from isolation, patients are no longer transmitting infectious virus. In the context of widespread community transmission, there may be ongoing shortages of laboratory consumables and reagents that affect diagnostic capacity, as well as significant pressure on the health system. There is also an increasing need for timely discharge of stable patients from health facilities in order to maintain healthcare capacity for severe and critically ill patients.

This guidance for ending isolation for COVID-19 patients reflects information available at the time of publication and may change if more information on the incubation period, viral shedding, and infectivity of SARS-CoV-2 infection becomes available.

Viral shedding

During the infectious course, COVID-19 viral RNA has been identified in respiratory tract specimens 1-2 days before symptom onset. Viral load persists up to eight days after symptom onset in mild cases and peaks 11 days after symptom onset in more severe cases, with detection of virus in nasopharyngeal swabs up to 37 days. In Kenya, we have had reports of patients testing positive for more than 40 days after diagnosis. RNA has been detected in stool (from day five after symptom onset and up to five weeks in moderate cases), as well as in whole blood, serum, saliva, and urine. Asymptomatic and pre-symptomatic transmission has been reported in many settings [9]. Additionally, patients with immune compromise may shed SARS-CoV-2 virus for prolonged periods. More data is still needed on viral dynamics in different patient populations and varying disease severity.

Detection of viral RNA does not necessarily mean that a person is infectious and able to transmit the virus to another person. Data suggests that viral shedding is highest prior to onset of symptoms and reduces thereafter, with most persons testing PCR negative on nasopharyngeal swabs by 21 days after onset of symptoms. Viable viruses have not been recovered in respiratory samples of patients with mild to moderate illness after 10 days of symptom onset and 20 days in patients with severe illness or immunosuppressive conditions. This therefore guides the recommendation that patients can be discharged from isolation after 10 days post symptom onset for those with non-severe disease and after 20 days for those with severe disease or immune compromise.

Recommendation for Discharge and ending Isolation for COVID-19 patients

Patients should be discharged from Covid-19 isolation when it is safe for the patient and when the likelihood of transmission of the virus to others is minimal. Patients who are stable and at low risk of disease progression can be discharged to home based care to complete the isolation period. Stable patients who do not meet the criteria for home-based care should be discharged after they meet the criteria of ending transmission-based precautions. Patients in need of further in-patient care should meet the criteria of ending transmission-based precautions before being transferred to the general wards.
Our recommendation is to use the time-based approach for discharge from isolation for all COVID-19 patients for the following reasons:

1. Reduce long periods of isolation reducing access of patients to care
2. Insufficient testing capacity to meet the requirements for test-based discharge criteria
3. Prolonged viral shedding leading to multiple repeat positive tests, despite little risk of viable virus

Table 11: Criteria for ending Isolation

<table>
<thead>
<tr>
<th>Symptom-based</th>
<th>Time-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 3 days (72 hours) have passed since recovery defined as resolution of fever without the use of fever-reducing medications; and Improvement of respiratory symptoms (e.g., cough, shortness of breath); and At least 10 days have passed since the date of their first positive COVID-19 diagnostic test</td>
<td>At least 10 days have passed since the date of their first positive COVID-19 diagnostic test, and They have not developed symptoms since their positive test</td>
</tr>
</tbody>
</table>

There is no need for repeat testing prior to ending isolation if the above criteria have been met

*Meeting criteria for discontinuation of Transmission-Based Precautions is not a prerequisite for hospital discharge

**Isolation should be extended to 20 days from symptom onset for those with severe disease or who are severely immunocompromised

***Isolation must be maintained at home (until the criteria above are met) if the patient returns home before discontinuation of Transmission-Based Precautions.

Care of COVID-19 patients after acute illness

Patients with Covid-19 may remain symptomatic with new or persisting symptoms after recovery. The most common symptoms include dyspnoea, cough, fatigue, and muscle pains. Additionally, the patients may present with psychological and cognitive symptoms which include anxiety, depression, PTSD symptoms and problems with concentration, memory and continence. Patients who had severe or critical illness have a higher prevalence of symptoms when compared to patients with non-severe illness. The stages of post-covid 19 infections can be defined as follows:

● Post-COVID-19 syndrome: signs and symptoms that develop during or after an infection consistent with COVID-19, continue for more than 12 weeks and are not explained by an alternative diagnosis.

Time to complete recovery will depend on premorbid condition, severity of illness and the symptoms experienced by the patient during illness. Recovery time is different for everyone but for many people symptoms will resolve by 12 weeks.

Patients who have had suspected or confirmed COVID-19 (of any disease severity) who have persistent, new, or changing symptoms should have access to follow-up care. Currently, there is limited information on the optimal strategies to manage persistent symptoms following recovery from acute covid-19 infection.

Management of post-COVID-19 symptoms

The goal of post-COVID-19 management is to optimize function and quality of life through provision of holistic patient-centred care and partnering with patients to identify achievable health goals.

Initial evaluation should include a detailed history of the patient’s COVID-19 disease course, severity of illness, and treatments received. Past medical history should include assessment for prior conditions that could impact the severity of COVID-19 disease. Social history should include assessment of the level of material and social support and resources available to the patient, and their potential impact on the capacity of patients to access health and recuperation services.

No laboratory test can definitively distinguish post-COVID-19 conditions from other aetiologies, in part due to the heterogeneity of post-COVID-19 conditions. Clinicians should maintain a high index of suspicion for other conditions presenting with similar symptoms and Laboratory testing should be guided by the patient history, physical examination, and clinical findings.

A comprehensive management plan should be developed in consultation with other specialists based on the patient’s presenting symptoms, underlying medical and psychiatric conditions, personal and social situations, and treatment goals. Expectations should be set with patients and their families that outcomes from post-COVID-19 conditions differ among patients, with some patients experiencing symptom improvement within the first three months, whereas others may continue to experience prolonged symptoms.

Continue follow-up over the course of illness, with considerations of broadening the testing and management approach over time if symptoms do not improve or resolve, while remaining transparent that there is much more to learn about post-COVID-19 conditions. Manage all underlying chronic medical conditions as appropriate.
COVID-19 and Vaccination

COVID-19 vaccination is an important public health measure, helping to decrease transmission, disease severity and death. All eligible persons should be vaccinated as per the current National COVID-19 Vaccination Guidelines and Deployment Plan. Health workers and those with comorbidities are particularly encouraged to be vaccinated.

COVID-19 Vaccination after SARS COV-2 Infection

COVID-19 vaccination is recommended for all eligible persons including those who have previously been infected or tested positive for SARS-COV-2 infection. Eligible patients with active COVID-19 infection should be vaccinated after recovery from acute illness, that is, at least 2 weeks after. Having prolonged COVID-19 symptoms is not a contraindication to receiving the COVID-19 vaccine.

The ability of emerging virus variants to evade immune responses is however still under investigation.

COVID-19 Vaccine Safety

COVID-19 vaccines have been found to be safe, though they may cause side-effects, most of which are minor. Adverse Events Following Immunization (AEFIs) include any untoward medical occurrence following vaccination, and may not necessarily have a causal relationship with the usage of the vaccine. Common side-effects include tenderness at the injection site with redness, swelling, itching or warmth, fever, fatigue, headache, myalgia, general body malaise, arthralgia and nausea (16). Most of these are self-limiting and may be managed supportively. Use of paracetamol does not affect the immune response to the vaccine.

Look out for rare but severe adverse events following immunization such as anaphylaxis, high fever and thrombosis with thrombocytopenic syndrome (17). Appropriate consultations should be made in the management of these conditions.

AEFIs should be managed according to the current National guidelines for monitoring, reporting and managing adverse events following immunization (18) and Guidelines for safety and Vigilance of medical products and Health technologies (19). All AEFIs should be reported to the Pharmacy and Poisons Board via https://pv.pharmacyboardkenya.org/

SARS-COV-2 Infection After Vaccination

It takes about 2 weeks to mount an adequate immune response after full vaccination, though there is some protection gained after the first dose. Full vaccination is recommended in order to get maximum protection against severe disease and death. While it remains possible for one to be infected with SARS-COV-2 after vaccination, most COVID-19 vaccines have been shown to be highly effective in protecting against severe disease and death.
References

1. Infection prevention and control during health care when coronavirus disease (COVID-19) is suspected or confirmed, WHO, July 2021
2. Infection prevention and control for the safe management of a dead body in the context of COVID-19, interim guidance, WHO, 4 September 2020

19. Pharmacy and Poisons Board. Adverse events reported following Immunization. Pharmacy and Poisons Board;

Annex

List of related guidelines

<table>
<thead>
<tr>
<th>Essential Health Service/Area</th>
<th>Guidelines Available</th>
<th>Link on MOH Website</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Addendum to the Home-based isolation and care-Paediatrics</td>
<td>Final-Adendum-of-Pediatrics-guide-on-HBIC-1.pdf (health.go.ke)</td>
</tr>
<tr>
<td>No.</td>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
List of Contributors

<table>
<thead>
<tr>
<th>NAME</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loice Achieng Ombajo</td>
<td>University of Nairobi</td>
</tr>
<tr>
<td>Marybeth Maritim</td>
<td>University of Nairobi</td>
</tr>
<tr>
<td>Phoebe Juma</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Christabel Khaemba</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Margaret Ogonga</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Duncan Nyukuri</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Frederick Wangai</td>
<td>University of Nairobi</td>
</tr>
<tr>
<td>Felix Riunga</td>
<td>Aga Khan University Hospital</td>
</tr>
<tr>
<td>Anne Mugera</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Reuben Okioma</td>
<td>The Nairobi Hospital</td>
</tr>
<tr>
<td>Andrew Owuor</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Agatha Olago</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Rosemary Wanjiru</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Evelyn Wesangula</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Eunice Gathitu</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Joyce Onsongo</td>
<td>World health Organization</td>
</tr>
<tr>
<td>Truphosa Mochache</td>
<td>World health Organization</td>
</tr>
<tr>
<td>Martin Chabi</td>
<td>World health Organization</td>
</tr>
<tr>
<td>James Wagude</td>
<td>Siaya County Referral Hospital</td>
</tr>
<tr>
<td>Daisy Korir</td>
<td>Moi Teaching and Referral Hospital</td>
</tr>
<tr>
<td>Anne Marie Macharia</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Julius Ogato</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Irungu Kamau</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Killian Kariuki</td>
<td>Kenyatta University Teaching and Referral Hospital</td>
</tr>
<tr>
<td>Josephat Mbuva</td>
<td>Ministry of Health/KEMSA</td>
</tr>
<tr>
<td>Samuel Ng'enga</td>
<td>Kenyatta National Hospital</td>
</tr>
<tr>
<td>Anthony Wainaina</td>
<td>Nakuru Provincial General Hospital</td>
</tr>
<tr>
<td>Judith Awinja</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>Marion Ong’ayo</td>
<td>Mbagathi District Hospital</td>
</tr>
<tr>
<td>Pauline Gacheri</td>
<td>Meru County Referral Hospital</td>
</tr>
<tr>
<td>Michael Mudeheri</td>
<td>Kakamega County Referral Hospital</td>
</tr>
<tr>
<td>Joyce Onsongo</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Collins Etemesi</td>
<td>NASCOP</td>
</tr>
</tbody>
</table>
Ministry of Health
Afya House, Cathedral road,
P.O. Box: 30016 - 00100, Nairobi, Kenya.

Telephone: +254-20-2717077
Email: ps@health.go.ke